rcook's picture
Update app.py
a927a51 verified
raw
history blame
4.18 kB
from fastapi import FastAPI
from datasets import load_dataset
from transformers import AutoTokenizer
from transformers import DataCollatorForSeq2Seq
import evaluate
import numpy as np
from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer
app = FastAPI()
@app.get("/")
def summarize():
# Example: Loading a dataset as part of the API
billsum = load_dataset("billsum", split="ca_test")
# import pandas as pd
# df = pd.read_csv("squad_sample_train.tsv", sep="\t")
# print(df.head()) # Debugging step
# return {"Hello": "World!", "dataset_length": len(billsum)}
# return df.head()
checkpoint = "google-t5/t5-small"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
prefix = "summarize: "
def preprocess_function(examples):
inputs = [prefix + doc for doc in examples["text"]]
model_inputs = tokenizer(inputs, max_length=1024, truncation=True)
labels = tokenizer(text_target=examples["summary"], max_length=128, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
tokenized_billsum = billsum.map(preprocess_function, batched=True)
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
rouge = evaluate.load("rouge")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
result = rouge.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in predictions]
result["gen_len"] = np.mean(prediction_lens)
return {k: round(v, 4) for k, v in result.items()}
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
training_args = Seq2SeqTrainingArguments(
output_dir="my_awesome_billsum_model",
eval_strategy="no",
learning_rate=2e-5,
per_device_train_batch_size=16, # Increase batch size
per_device_eval_batch_size=16,
weight_decay=0.01,
save_total_limit=3,
num_train_epochs=1, # Reduce epochs
predict_with_generate=True,
fp16=True, # Keep mixed precision
push_to_hub=False,
# optim="adamw_bnb_8bit", # Use 8-bit optimizer
logging_steps=100, # Reduce logging overhead
dataloader_num_workers=4, # Speed up data loading
save_strategy="epoch", # Reduce checkpointing overhead
gradient_accumulation_steps=4 # Effective larger batch size
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=tokenized_billsum["train"],
eval_dataset=tokenized_billsum["test"],
processing_class=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
trainer.train()
return data_collator
# return type(tokenized_billsum)
"""from fastapi import FastAPI
from datasets import load_dataset
from transformers import AutoTokenizer
app = FastAPI()
#@app.get("/")
# Load dataset and tokenizer
billsum = load_dataset("billsum", split="ca_test") # Load a small sample
tokenizer = AutoTokenizer.from_pretrained("t5-small")
prefix = "summarize: " # Example prefix for text generation
@app.get("/")
def preprocess_function(examples):
inputs = [prefix + doc for doc in examples["text"]]
model_inputs = tokenizer(inputs, max_length=1024, truncation=True)
labels = tokenizer(text_target=examples["summary"], max_length=128, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
#@app.get("/")
def get_tokenized_data():
tokenized_billsum = billsum.map(preprocess_function, batched=True)
# Convert to list of dictionaries
json_serializable_output = tokenized_billsum.to_pandas().to_dict(orient="records")
return {"tokenized_data": json_serializable_output} # Ensure JSON format"""