File size: 1,587 Bytes
e065ed6
 
2a0a178
e065ed6
8d32209
7b46218
2a0a178
a2da4cb
7e79fe7
 
2a0a178
3ae52db
 
a2da4cb
2a0a178
 
 
 
 
f5cee09
 
eca6a4c
e065ed6
0e457cf
8d32209
 
 
0e457cf
f5cee09
8d32209
 
e065ed6
eca6a4c
f5cee09
eca6a4c
 
 
 
 
 
 
e065ed6
 
 
 
 
 
 
eca6a4c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#for learning
import os
#import openai
import gradio as gr
from llama_index.readers.file import PDFReader

### added to remove openapi

from transformers import AutoModelForCausalLM
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#model_name = "baffo32/decapoda-research-llama-7B-hf"
model_name = "meta-llama/Llama-3.2-3B"
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)

### added to remove openapi


#openai.api_key =  os.environ.get('O_APIKey')
Data_Read =  os.environ.get('Data_Reader')
ChurnData =  os.environ.get('Churn_Data')
ChurnData2 =  os.environ.get('Churn_Data2')

#read data orig
#from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, SummaryIndex, download_loader
#DataReader = download_loader(Data_Read)
#loader = DataReader()

#read data
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, SummaryIndex
loader = PDFReader()

### 1st file
documents = loader.load_data(file=ChurnData)
### 1st file

### 2nd file
documents2 = loader.load_data(file=ChurnData2)
documents = documents + documents2
### 2nd file

index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()

def reply(message, history):
  answer = str(query_engine.query(message))
  return answer

Conversing = gr.ChatInterface(reply, chatbot=gr.Chatbot(height="70vh",label="Conversation"), retry_btn=None,theme=gr.themes.Monochrome(),
                              title = 'E-Commerce BT/AN/CA/DH/VE/GA CMS Q&A', undo_btn = None, clear_btn = None, css='footer {visibility: hidden}').launch()