File size: 1,073 Bytes
e065ed6
 
663fbef
e065ed6
739755b
663fbef
 
f5cee09
 
48bfd6d
e065ed6
f5cee09
459e721
ac8338c
f5cee09
 
e065ed6
48bfd6d
f5cee09
48bfd6d
 
 
 
 
 
 
 
ca334ba
 
e065ed6
663fbef
 
 
e065ed6
af6029d
4f83ca1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#for learning
import os
import openai
import gradio as gr

openai.api_key =  os.environ.get('O_APIKey')
#HF_Token = os.environ.get('HF_Token')
Data_Read =  os.environ.get('Data_Reader')
ChurnData =  os.environ.get('Churn_Data')
ChurnData2 =  os.environ.get('Churn_Data2')

#read data
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, SummaryIndex, download_loader

DataReader = download_loader(Data_Read)
loader = DataReader()

### 1st file
documents = loader.load_data(file=ChurnData)
### 1st file

### 2nd file
documents2 = loader.load_data(file=ChurnData2)
documents = documents + documents2
### 2nd file

#create index
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()

def reply(message, history):
  answer = str(query_engine.query(message))
  return answer

Conversing = gr.ChatInterface(reply, chatbot=gr.Chatbot(height="70vh"), retry_btn=None,theme=gr.themes.Monochrome(),
                              title = 'BT Accor Q&A', undo_btn = None, clear_btn = None, css='footer {visibility: hidden}').launch()