# import matplotlib.pyplot as plt
# %matplotlib inline
# import seaborn as sns
import pickle
import pandas as pd
import re
import os
import tensorflow as tf
from tensorflow.keras.layers import Embedding, LSTM, Dense,Bidirectional
from tensorflow.keras.models import Model
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras import backend as K
import numpy as np
import string
from string import digits
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
import nltk
from nltk.tokenize import word_tokenize
from tqdm import tqdm
from Data import Dataset,Dataloder



"""########################################------MODEL------########################################
"""

########################################------Encoder model------########################################
class Encoder(tf.keras.Model):


    def __init__(self,inp_vocab_size,embedding_size,lstm_size,input_length):
        super().__init__()

        self.inp_vocab_size = inp_vocab_size
        self.embedding_size = embedding_size
        self.lstm_size = lstm_size
        self.input_length = input_length
        #Initialize Embedding layer

    def build(self,input_shape):
        self.embedding = Embedding(input_dim=self.inp_vocab_size, output_dim=self.embedding_size,
                                  input_length=self.input_length,trainable=True,name="encoder_embed")
        #Intialize Encoder LSTM layer
        self.bilstm = tf.keras.layers.Bidirectional(LSTM(units = self.lstm_size,return_sequences=True,return_state=True),merge_mode='sum')

    def call(self,input_sequence,initial_state):
        '''
          Input:Input_sequence[batch_size,input_length]
                Initial_state 4x[batch_size,encoder_units]
          
          Output: lstm_enc_output [batch_size,input_length,encoder_units]
                  forward_h/c & backward_h/c [batch_size,encoder_units]
        '''
        # print("initial_state",len(initial_state))
        input_embd = self.embedding(input_sequence)
        lstm_enc_output, forward_h, forward_c, backward_h, backward_c = self.bilstm(input_embd,initial_state)
        return lstm_enc_output, forward_h, forward_c, backward_h, backward_c
        # return lstm_enc_output, forward_h, forward_c

    
    def initialize_states(self,batch_size):
      '''
      Given a batch size it will return intial hidden state and intial cell state.
      If batch size is 32- Hidden state is zeros of size [32,lstm_units], cell state zeros is of size [32,lstm_units]
      '''
      self.lstm_state_h = tf.random.uniform(shape=[batch_size,self.lstm_size],dtype=tf.float32)
      self.lstm_state_c = tf.random.uniform(shape=[batch_size,self.lstm_size],dtype=tf.float32)
      return self.lstm_state_h,self.lstm_state_c

    def initialize_states_bidirectional(self,batch_size):
      states = [tf.zeros((batch_size, self.lstm_size)) for i in range(4)]
      return states



########################################------Attention model------########################################
class Attention(tf.keras.layers.Layer):
    def __init__(self,scoring_function, att_units):
        super().__init__()
        self.att_units = att_units
        self.scoring_function = scoring_function
        # self.batch_size = batch_size
        # Please go through the reference notebook and research paper to complete the scoring functions

        if self.scoring_function=='dot':
            pass
        
        elif scoring_function == 'general':
            self.dense = Dense(self.att_units)
        
        elif scoring_function == 'concat':
            self.dense = tf.keras.layers.Dense(att_units, activation='tanh')
            self.dense1 = tf.keras.layers.Dense(1)
  
  
    def call(self,decoder_hidden_state,encoder_output):


    
        if self.scoring_function == 'dot':
            decoder_hidden_state = tf.expand_dims(decoder_hidden_state,axis=2)
            similarity = tf.matmul(encoder_output,decoder_hidden_state)
            weights    = tf.nn.softmax(similarity,axis=1)
            context_vector = tf.matmul(weights,encoder_output,transpose_a=True)
            context_vector = tf.squeeze(context_vector, axis=1)
            return context_vector,weights

        elif self.scoring_function == 'general':
            decoder_hidden_state=tf.expand_dims(decoder_hidden_state, 1)
            score = tf.matmul(decoder_hidden_state, self.dense(
                    encoder_output), transpose_b=True)
            attention_weights = tf.keras.activations.softmax(score, axis=-1) 
            context_vector = tf.matmul(attention_weights, encoder_output)
            context_vector=tf.reduce_sum(context_vector, axis=1)
            attention_weights=tf.reduce_sum(attention_weights, axis=1)
            attention_weights=tf.expand_dims(attention_weights, 2)
            return context_vector,attention_weights

        elif self.scoring_function == 'concat':
            decoder_hidden_state=tf.expand_dims(decoder_hidden_state, 1)
            decoder_hidden_state = tf.tile(
                        decoder_hidden_state, [1,30, 1])
            score = self.dense1(
                        self.dense(tf.concat((decoder_hidden_state, encoder_output), axis=-1)))
            score = tf.transpose(score, [0, 2, 1])
            attention_weights = tf.keras.activations.softmax(score, axis=-1) 
            context_vector = tf.matmul(attention_weights, encoder_output)
            context_vector=tf.reduce_sum(context_vector, axis=1)
            attention_weights=tf.reduce_sum(attention_weights, axis=1)
            attention_weights=tf.expand_dims(attention_weights, 2)
            
            return context_vector,attention_weights
    

########################################------OneStepDecoder model------########################################
class OneStepDecoder(tf.keras.Model):
    def __init__(self,tar_vocab_size, embedding_dim, input_length, dec_units ,score_fun ,att_units):

      # Initialize decoder embedding layer, LSTM and any other objects needed
      super().__init__()
      self.tar_vocab_size = tar_vocab_size
      self.embedding_dim = embedding_dim
      self.input_length = input_length
      self.dec_units = dec_units
      self.score_fun = score_fun
      self.att_units = att_units

    def build(self,input_shape):
      self.attention = Attention('concat', self.att_units)
      self.embedding = Embedding(input_dim=self.tar_vocab_size,output_dim=self.embedding_dim,
                                 input_length=self.input_length,mask_zero=True,trainable=True,name="Decoder_Embed")
      self.bilstm = tf.keras.layers.Bidirectional(LSTM(units = self.dec_units,return_sequences=True,return_state=True),merge_mode='sum')
      self.dense = Dense(self.tar_vocab_size)
      


    def call(self,input_to_decoder, encoder_output, f_state_h,f_state_c,b_state_h,b_state_c):
        dec_embd = self.embedding(input_to_decoder)
        context_vectors,attention_weights = self.attention(f_state_h,encoder_output)
        context_vectors_ = tf.expand_dims(context_vectors,axis=1)
        concat_vector = tf.concat([dec_embd,context_vectors_],axis=2)
        states = [f_state_h,f_state_c,b_state_h,b_state_c]
        decoder_outputs,dec_f_state_h,dec_f_state_c,dec_b_state_h,dec_b_state_c = self.bilstm(concat_vector,states)
        decoder_outputs = tf.squeeze(decoder_outputs,axis=1)
        dense_output = self.dense(decoder_outputs)
        
        return dense_output,dec_f_state_h,dec_f_state_c,attention_weights,context_vectors
    
    
########################################------Decoder model------########################################
class Decoder(tf.keras.Model):
    def __init__(self,out_vocab_size, embedding_dim, input_length, dec_units ,score_fun ,att_units):
      #Intialize necessary variables and create an object from the class onestepdecoder
      super().__init__()
      self.out_vocab_size = out_vocab_size
      self.embedding_dim = embedding_dim
      self.input_length = input_length
      self.dec_units = dec_units
      self.score_fun = score_fun
      self.att_units = att_units

    def build(self,input_shape):
      self.onestep_decoder = OneStepDecoder(self.out_vocab_size, self.embedding_dim, self.input_length, self.dec_units ,self.score_fun ,
                                            self.att_units)

    def call(self, input_to_decoder,encoder_output,f_decoder_hidden_state,f_decoder_cell_state,b_decoder_hidden_state,b_decoder_cell_state ):

      all_outputs = tf.TensorArray(tf.float32, size=self.input_length,name="output_array")
      
      for timestep in range(self.input_length):
        output,state_h,state_c,attention_weights,context_vector = self.onestep_decoder(input_to_decoder[:,timestep:timestep+1],encoder_output,
                                                                                       f_decoder_hidden_state,f_decoder_cell_state,b_decoder_hidden_state,b_decoder_cell_state)
        all_outputs = all_outputs.write(timestep,output)

      all_outputs = tf.transpose(all_outputs.stack(),[1,0,2])
      
      return all_outputs
  
########################################------encoder_decoder model------########################################
class encoder_decoder(tf.keras.Model):
    def __init__(self,out_vocab_size,inp_vocab_size,embedding_dim,embedding_size,in_input_length,tar_input_length,dec_units,lstm_size,att_units,batch_size):
        super().__init__()
        #Intialize objects from encoder decoder
        self.out_vocab_size = out_vocab_size
        self.inp_vocab_size = inp_vocab_size

        self.embedding_dim_target = embedding_dim
        self.embedding_dim_input = embedding_size
        self.in_input_length = in_input_length
        self.tar_input_length = tar_input_length

        self.dec_lstm_size = dec_units 
        self.enc_lstm_size = lstm_size

        self.att_units = att_units
        self.batch_size = batch_size

    def build(self,input_shape):
        self.encoder = Encoder(self.inp_vocab_size,self.embedding_dim_input,self.enc_lstm_size,self.in_input_length)
        self.decoder = Decoder(self.out_vocab_size,self.embedding_dim_target, self.tar_input_length, self.dec_lstm_size ,'general' ,self.att_units)
    
    def call(self,data):
        input_sequence, target_sequence = data[0],data[1]
        # print(input_sequence.shape)
        encoder_initial_state = self.encoder.initialize_states_bidirectional(self.batch_size)
        # print(len(encoder_initial_state))
        encoder_output,f_encoder_state_h,f_encoder_state_c,b_encoder_state_h,b_encoder_state_c = self.encoder(input_sequence,encoder_initial_state)
        decoder_output = self.decoder(target_sequence,encoder_output,f_encoder_state_h,f_encoder_state_c,b_encoder_state_h,b_encoder_state_c)
        return decoder_output


def loss_function(real, pred):
    loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
    from_logits=True)
    mask = tf.math.logical_not(tf.math.equal(real, 0))
    loss_ = loss_object(real, pred)
    mask = tf.cast(mask, dtype=loss_.dtype)
    loss_ *= mask

    return tf.reduce_mean(loss_)

def accuracy(real,pred):
    pred_val = K.cast(K.argmax(pred,axis=-1),dtype='float32')
    real_val = K.cast(K.equal(real,pred_val),dtype='float32')

    mask = K.cast(K.greater(real,0),dtype='float32')
    n_correct = K.sum(mask*real_val)
    n_total = K.sum(mask)

    return n_correct/n_total

def load_weights():
    """======================================================LOADING======================================================"""
    # Dataset
    with open('dataset/30_length/train.pickle', 'rb') as handle:
        train = pickle.load(handle)

    with open('dataset/30_length/validation.pickle', 'rb') as handle:
        validation = pickle.load(handle)

    # Tokenizer
    with open('tokenizer/30_tokenizer_eng.pickle', 'rb') as handle:
        tokenizer_eng = pickle.load(handle)

    with open('tokenizer/30_tokenizer_ass.pickle', 'rb') as handle:
        tokenizer_ass = pickle.load(handle)

    # Vocab Size
    vocab_size_ass = len(tokenizer_ass.word_index.keys())
    vocab_size_eng = len(tokenizer_eng.word_index.keys())
    
    return train,validation,tokenizer_eng,tokenizer_ass,vocab_size_ass,vocab_size_eng

def main():
    train,validation,tokenizer_eng,tokenizer_ass,vocab_size_ass,vocab_size_eng = load_weights()
    in_input_length = 30
    tar_input_length = 30
    inp_vocab_size = vocab_size_ass
    out_vocab_size = vocab_size_eng

    dec_units = 128
    lstm_size = 128
    att_units = 256
    batch_size = 32
    embedding_dim = 300
    embedding_size = 300

    train_dataset = Dataset(train, tokenizer_ass, tokenizer_eng, in_input_length)
    test_dataset  = Dataset(validation, tokenizer_ass, tokenizer_eng, in_input_length)

    train_dataloader = Dataloder(train_dataset, batch_size)
    test_dataloader = Dataloder(test_dataset, batch_size)


    print(train_dataloader[0][0][0].shape, train_dataloader[0][0][1].shape, train_dataloader[0][1].shape)
    
    model = encoder_decoder(out_vocab_size,inp_vocab_size,embedding_dim,embedding_size,in_input_length,tar_input_length,dec_units,lstm_size,att_units,batch_size)
    optimizer = tf.keras.optimizers.Adam()
    model.compile(optimizer=optimizer,loss=loss_function,metrics=[accuracy])
    
    # train_steps=train.shape[0]//32
    # valid_steps=validation.shape[0]//32
    model.fit(train_dataloader, steps_per_epoch=10, epochs=1,verbose=1, validation_data=train_dataloader, validation_steps=1)
    
    model.load_weights('models/bi_directional_concat_256_batch_160_epoch_30_length_ass_eng_nmt_weights.h5')
    model.fit(train_dataloader, steps_per_epoch=10, epochs=1,verbose=1, validation_data=train_dataloader, validation_steps=1)
    model.summary()
    
    return model,tokenizer_eng,tokenizer_ass,in_input_length
# if __name__=="__main__":
#     main()