Spaces:
Sleeping
Sleeping
Made changes to app file
Browse files
app.py
CHANGED
@@ -1,19 +1,26 @@
|
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from pydantic import BaseModel
|
|
|
5 |
|
6 |
-
# ---
|
7 |
-
|
8 |
-
|
9 |
-
os.
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
app = FastAPI(title="DirectEd LoRA API (safe startup)")
|
15 |
|
16 |
-
# lightweight health endpoint
|
17 |
@app.get("/health")
|
18 |
def health():
|
19 |
return {"ok": True}
|
@@ -23,21 +30,19 @@ class Request(BaseModel):
|
|
23 |
max_new_tokens: int = 150
|
24 |
temperature: float = 0.7
|
25 |
|
26 |
-
# Globals to be initialized on startup
|
27 |
pipe = None
|
28 |
|
29 |
@app.on_event("startup")
|
30 |
def load_model():
|
31 |
global pipe
|
32 |
try:
|
33 |
-
# heavy imports
|
34 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
35 |
from peft import PeftModel
|
36 |
|
37 |
-
BASE_MODEL = "unsloth/llama-3-8b-Instruct-bnb-4bit"
|
38 |
-
ADAPTER_REPO = "rayymaxx/DirectEd-AI-LoRA"
|
39 |
|
40 |
-
# load tokenizer + base model then attach adapter
|
41 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
42 |
base_model = AutoModelForCausalLM.from_pretrained(
|
43 |
BASE_MODEL,
|
@@ -50,17 +55,15 @@ def load_model():
|
|
50 |
model.eval()
|
51 |
|
52 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")
|
53 |
-
|
54 |
logging.info("Model and adapter loaded successfully.")
|
55 |
except Exception as e:
|
56 |
-
# Keep server up; logs will show why load failed
|
57 |
logging.exception("Failed to load model at startup: %s", e)
|
58 |
pipe = None
|
59 |
|
60 |
@app.post("/generate")
|
61 |
def generate(req: Request):
|
62 |
if pipe is None:
|
63 |
-
raise HTTPException(status_code=503, detail="Model not loaded
|
64 |
try:
|
65 |
out = pipe(req.prompt, max_new_tokens=req.max_new_tokens, temperature=req.temperature, do_sample=True)
|
66 |
return {"response": out[0]["generated_text"]}
|
|
|
1 |
+
# app.py (safe, use /tmp for cache)
|
2 |
import os
|
3 |
import logging
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from pydantic import BaseModel
|
6 |
+
import tempfile
|
7 |
|
8 |
+
# --- Put caches in a writable temp dir to avoid permission errors ---
|
9 |
+
TMP_CACHE = os.environ.get("HF_CACHE_DIR", os.path.join(tempfile.gettempdir(), "hf_cache"))
|
10 |
+
try:
|
11 |
+
os.makedirs(TMP_CACHE, exist_ok=True)
|
12 |
+
except Exception as e:
|
13 |
+
# if even this fails, fall back to tempfile.gettempdir()
|
14 |
+
TMP_CACHE = tempfile.gettempdir()
|
15 |
+
|
16 |
+
# export environment vars before importing transformers
|
17 |
+
os.environ["TRANSFORMERS_CACHE"] = TMP_CACHE
|
18 |
+
os.environ["HF_HOME"] = TMP_CACHE
|
19 |
+
os.environ["HF_DATASETS_CACHE"] = TMP_CACHE
|
20 |
+
os.environ["HF_METRICS_CACHE"] = TMP_CACHE
|
21 |
|
22 |
app = FastAPI(title="DirectEd LoRA API (safe startup)")
|
23 |
|
|
|
24 |
@app.get("/health")
|
25 |
def health():
|
26 |
return {"ok": True}
|
|
|
30 |
max_new_tokens: int = 150
|
31 |
temperature: float = 0.7
|
32 |
|
|
|
33 |
pipe = None
|
34 |
|
35 |
@app.on_event("startup")
|
36 |
def load_model():
|
37 |
global pipe
|
38 |
try:
|
39 |
+
# heavy imports done during startup
|
40 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
41 |
from peft import PeftModel
|
42 |
|
43 |
+
BASE_MODEL = "unsloth/llama-3-8b-Instruct-bnb-4bit"
|
44 |
+
ADAPTER_REPO = "rayymaxx/DirectEd-AI-LoRA" # <-- replace with your adapter repo
|
45 |
|
|
|
46 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
47 |
base_model = AutoModelForCausalLM.from_pretrained(
|
48 |
BASE_MODEL,
|
|
|
55 |
model.eval()
|
56 |
|
57 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")
|
|
|
58 |
logging.info("Model and adapter loaded successfully.")
|
59 |
except Exception as e:
|
|
|
60 |
logging.exception("Failed to load model at startup: %s", e)
|
61 |
pipe = None
|
62 |
|
63 |
@app.post("/generate")
|
64 |
def generate(req: Request):
|
65 |
if pipe is None:
|
66 |
+
raise HTTPException(status_code=503, detail="Model not loaded. Check logs.")
|
67 |
try:
|
68 |
out = pipe(req.prompt, max_new_tokens=req.max_new_tokens, temperature=req.temperature, do_sample=True)
|
69 |
return {"response": out[0]["generated_text"]}
|