Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,36 +1,31 @@
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from diffusers import StableVideoDiffusionPipeline
|
| 4 |
-
from
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
|
| 9 |
# Load the pipeline
|
| 10 |
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
| 11 |
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
| 12 |
)
|
| 13 |
-
pipeline.
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
image = Image.open(image)
|
| 19 |
image = image.resize((1024, 576))
|
| 20 |
|
| 21 |
# Set the generator seed
|
| 22 |
-
generator = torch.manual_seed(seed)
|
| 23 |
|
| 24 |
# Generate the video frames
|
| 25 |
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
|
| 26 |
|
| 27 |
-
# Convert frames to a format suitable for video export
|
| 28 |
-
frames = [(frame * 255).astype(np.uint8) for frame in frames]
|
| 29 |
-
|
| 30 |
# Export the frames to a video file
|
| 31 |
-
clip = ImageSequenceClip(frames, fps=7)
|
| 32 |
output_video_path = "generated.mp4"
|
| 33 |
-
|
| 34 |
|
| 35 |
return output_video_path
|
| 36 |
|
|
@@ -38,7 +33,7 @@ def generate_video(image, seed):
|
|
| 38 |
iface = gr.Interface(
|
| 39 |
fn=generate_video,
|
| 40 |
inputs=[
|
| 41 |
-
gr.Image(type="
|
| 42 |
gr.Number(label="Seed", value=42)
|
| 43 |
],
|
| 44 |
outputs=gr.Video(label="Generated Video"),
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from diffusers import StableVideoDiffusionPipeline
|
| 4 |
+
from diffusers.utils import load_image, export_to_video
|
| 5 |
+
|
| 6 |
+
# Check if GPU is available
|
| 7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
| 9 |
# Load the pipeline
|
| 10 |
pipeline = StableVideoDiffusionPipeline.from_pretrained(
|
| 11 |
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
| 12 |
)
|
| 13 |
+
pipeline.to(device)
|
| 14 |
|
| 15 |
+
def generate_video(image_path, seed):
|
| 16 |
+
# Load and preprocess the image
|
| 17 |
+
image = load_image(image_path)
|
|
|
|
| 18 |
image = image.resize((1024, 576))
|
| 19 |
|
| 20 |
# Set the generator seed
|
| 21 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 22 |
|
| 23 |
# Generate the video frames
|
| 24 |
frames = pipeline(image, decode_chunk_size=8, generator=generator).frames[0]
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
# Export the frames to a video file
|
|
|
|
| 27 |
output_video_path = "generated.mp4"
|
| 28 |
+
export_to_video(frames, output_video_path, fps=7)
|
| 29 |
|
| 30 |
return output_video_path
|
| 31 |
|
|
|
|
| 33 |
iface = gr.Interface(
|
| 34 |
fn=generate_video,
|
| 35 |
inputs=[
|
| 36 |
+
gr.Image(type="filepath", label="Upload Image"),
|
| 37 |
gr.Number(label="Seed", value=42)
|
| 38 |
],
|
| 39 |
outputs=gr.Video(label="Generated Video"),
|