Spaces:
Sleeping
Sleeping
File size: 8,752 Bytes
758388c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import streamlit as st
import cv2
import face_recognition
import os
import sqlite3
import pandas as pd
import numpy as np
from datetime import datetime
from PIL import Image
from keras.models import load_model
# --- Streamlit Configuration ---
st.set_page_config(
page_title="Face and Emotion Recognition Attendance System",
page_icon=":camera:",
layout="wide"
)
# --- Initialize session_state attributes ---
if "camera_active" not in st.session_state:
st.session_state.camera_active = False
# --- Password Protection (Optional) ---
password = st.text_input("Enter password", type="password")
# Stop if the password is incorrect
if password != "ravinder":
st.stop()
# --- Database Setup ---
conn = sqlite3.connect('attendance.db')
cursor = conn.cursor()
# Create Table with Emotion Column
cursor.execute('''
CREATE TABLE IF NOT EXISTS attendance (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT,
roll_no TEXT,
date TEXT,
time TEXT,
status TEXT,
emotion TEXT
)
''')
conn.commit()
# --- Load Known Faces ---
def load_known_faces():
images = []
classnames = []
directory = "Photos"
for cls in os.listdir(directory):
if os.path.splitext(cls)[1] in [".jpg", ".jpeg", ".png"]:
img_path = os.path.join(directory, cls)
curImg = cv2.imread(img_path)
images.append(curImg)
classnames.append(os.path.splitext(cls)[0])
return images, classnames
# --- Encode Known Faces ---
def find_encodings(images):
encode_list = []
for img in images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encode_list.append(encode)
return encode_list
Images, classnames = load_known_faces()
encodeListKnown = find_encodings(Images)
# --- Load Emotion Detection Model ---
@st.cache_resource
def load_emotion_model():
return load_model('CNN_Model_acc_75.h5')
emotion_model = load_emotion_model()
img_shape = 48
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# --- Preprocess Frame for Emotion Detection ---
def process_frame(frame):
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
emotions_detected = []
for (x, y, w, h) in faces:
roi_gray = gray_frame[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
face_roi = cv2.resize(roi_color, (img_shape, img_shape))
face_roi = np.expand_dims(face_roi, axis=0)
face_roi = face_roi / float(img_shape)
predictions = emotion_model.predict(face_roi)
emotion = emotion_labels[np.argmax(predictions[0])]
emotions_detected.append(emotion)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(frame, emotion, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2)
return frame, emotions_detected
# --- Camera Functionality ---
camera_active = st.session_state.get("camera_active", False)
if st.sidebar.button("Start Camera"):
st.session_state.camera_active = True
if st.sidebar.button("Stop Camera"):
st.session_state.camera_active = False
# --- Add New Face ---
def add_new_face():
new_name = st.text_input("Enter your name:")
roll_no = st.text_input("Enter your roll number:")
if st.session_state.camera_active:
img_file_buffer = st.camera_input("Take a picture")
if img_file_buffer is not None and new_name and roll_no:
st.session_state.camera_active = False # Stop camera after photo is taken
# Check if the user already exists in the database
cursor.execute("SELECT * FROM attendance WHERE name = ? AND roll_no = ?", (new_name, roll_no))
existing_user = cursor.fetchone()
if existing_user:
st.warning(f"{new_name} ({roll_no}) is already registered.")
else:
# Save the photo and update face encodings
image = np.array(Image.open(img_file_buffer))
img_path = os.path.join("Photos", f"{new_name}_{roll_no}.jpg")
cv2.imwrite(img_path, image)
global Images, classnames, encodeListKnown
Images, classnames = load_known_faces()
encodeListKnown = find_encodings(Images)
st.success(f"New face added for {new_name} ({roll_no}).")
else:
st.info("Camera is not active. Start the camera to take a picture.")
# --- Recognize Face and Emotion ---
def recognize_face():
if st.session_state.camera_active:
img_file_buffer = st.camera_input("Take a picture")
if img_file_buffer is not None:
st.session_state.camera_active = False # Stop camera after photo is taken
with st.spinner("Processing..."):
image = np.array(Image.open(img_file_buffer))
imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
detected_emotions = []
if len(encodesCurFrame) > 0:
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classnames[matchIndex].split("_")[0]
roll_no = classnames[matchIndex].split("_")[1]
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
frame, detected_emotions = process_frame(image)
date = datetime.now().strftime('%Y-%m-%d')
time = datetime.now().strftime('%H:%M:%S')
emotion = detected_emotions[0] if detected_emotions else "Unknown"
cursor.execute("INSERT INTO attendance (name, roll_no, date, time, status, emotion) VALUES (?, ?, ?, ?, 'Present', ?)",
(name, roll_no, date, time, emotion))
conn.commit()
st.success(f"Attendance marked for {name} with emotion: {emotion}.")
else:
st.warning("Face not recognized.")
else:
st.warning("No face detected.")
st.image(image, caption="Detected Face and Emotion", use_container_width=True)
else:
st.info("Camera is not active. Start the camera to take a picture.")
# --- View Attendance Records ---
def view_attendance_records():
st.subheader("Attendance Records")
cursor.execute("SELECT * FROM attendance ORDER BY date DESC, time DESC")
records = cursor.fetchall()
if records:
df = pd.DataFrame(records, columns=["ID", "Name", "Roll No", "Date", "Time", "Status", "Emotion"])
st.table(df)
else:
st.info("No attendance records available.")
# --- Main Logic ---
if __name__ == "__main__":
st.title("EMOTION-MARK-AI (FACIAL SENTIMENT ANALYSIZED ATTENDANCE TRACKER)")
# Larger title
st.markdown("<h2 style='text-align: center;'>Can Recognise Face and Detect:</h2>", unsafe_allow_html=True)
# Smaller subtitle
st.markdown("<h3 style='text-align: center;'>Emotions: angry, fear, happy, neutral, sad, surprise </h3>", unsafe_allow_html=True)
app_mode = st.sidebar.selectbox("Select Mode", ["Recognize Face & Emotion", "Add New Face", "View Records"])
if app_mode == "Recognize Face & Emotion":
recognize_face()
elif app_mode == "Add New Face":
add_new_face()
elif app_mode == "View Records":
view_attendance_records()
conn.close() |