import streamlit as st import cv2 import numpy as np import time import os from keras.models import load_model from PIL import Image import pymongo from datetime import datetime import tempfile from facenet_pytorch import MTCNN # MongoDB Atlas Connection String MONGO_URI = "mongodb+srv://test:test@cluster0.sxci1.mongodb.net/?retryWrites=true&w=majority" # Connect to MongoDB client = pymongo.MongoClient(MONGO_URI) db = client.get_database("emotion_detection") collection = db.get_collection("face_data") # Larger title st.markdown("

Emotion Detection with Face Recognition

", unsafe_allow_html=True) # Smaller subtitle st.markdown("

angry, fear, happy, neutral, sad, surprise

", unsafe_allow_html=True) # Start time for measuring performance start = time.time() # Load the emotion detection model @st.cache_resource def load_emotion_model(): model = load_model('CNN_Model_acc_75.h5') # Ensure this file is in your Space return model model = load_emotion_model() print("Time taken to load model: ", time.time() - start) # Emotion labels emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise'] # Initialize MTCNN for face detection mtcnn = MTCNN() # Load known faces and names known_faces = [] known_names = [] face_recognizer = cv2.face.LBPHFaceRecognizer_create() def load_known_faces(): folder_path = "known_faces" # Folder containing known face images for image_name in os.listdir(folder_path): if image_name.endswith(('.jpg', '.jpeg', '.png')): image_path = os.path.join(folder_path, image_name) image = cv2.imread(image_path) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Detect face in the image using mtcnn faces, _ = mtcnn.detect(image) # Use the correct method detect() if faces is not None: for face in faces: x, y, w, h = face[0], face[1], face[2], face[3] roi_gray = gray[y:y+h, x:x+w] known_faces.append(roi_gray) known_names.append(image_name.split('.')[0]) # Assuming file name is the person's name # Train the recognizer with the known faces face_recognizer.train(known_faces, np.array([i for i in range(len(known_faces))])) load_known_faces() # Process a single frame def process_frame(frame): gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces, _ = mtcnn.detect(frame) # Use the correct detect method result_text = "" # Initialize result text if faces is not None and len(faces) > 0: for face in faces: x, y, w, h = face[0], face[1], face[2], face[3] roi_color = frame[y:y+h, x:x+w] roi_gray = gray[y:y+h, x:x+w] # Apply histogram equalization for better feature extraction roi_gray = cv2.equalizeHist(roi_gray) face_roi = cv2.resize(roi_color, (48, 48)) face_roi = cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB) face_roi = np.expand_dims(face_roi, axis=0) / 255.0 # Normalize # Emotion detection predictions = model.predict(face_roi) emotion = emotion_labels[np.argmax(predictions[0])] # Face recognition name = "Unknown" label, confidence = face_recognizer.predict(roi_gray) if confidence < 100: name = known_names[label] # Format result text result_text = f"{name} is feeling {emotion}" # Save data to MongoDB if face is recognized (name != Unknown) if name != "Unknown": timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") document = { "name": name, "emotion": emotion, "timestamp": timestamp } # Insert the data into MongoDB collection.insert_one(document) print(f"Data inserted into MongoDB: {document}") # Draw bounding box and label cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.putText(frame, result_text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) return frame, result_text # Video feed display def video_feed(video_source): frame_placeholder = st.empty() # Placeholder for displaying video frames text_placeholder = st.empty() # Placeholder for displaying result text while True: ret, frame = video_source.read() if not ret: break frame, result_text = process_frame(frame) # Display frame and result text frame_placeholder.image(frame, channels="BGR", use_column_width=True) text_placeholder.markdown(f"

{result_text}

", unsafe_allow_html=True) # Sidebar for user input source selection upload_choice = st.sidebar.radio("Choose Input Source", ["Upload Image", "Upload Video", "Camera"]) if upload_choice == "Camera": image = st.camera_input("Take a picture") if image: frame = np.array(Image.open(image)) frame, result_text = process_frame(frame) st.image(frame, caption='Processed Image', use_column_width=True) st.markdown(f"

{result_text}

", unsafe_allow_html=True) elif upload_choice == "Upload Image": uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg", "gif"]) if uploaded_image: image = Image.open(uploaded_image) frame = np.array(image) frame, result_text = process_frame(frame) st.image(frame, caption='Processed Image', use_column_width=True) st.markdown(f"

{result_text}

", unsafe_allow_html=True) elif upload_choice == "Upload Video": uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"]) if uploaded_video: with tempfile.NamedTemporaryFile(delete=False) as tfile: tfile.write(uploaded_video.read()) video_source = cv2.VideoCapture(tfile.name) video_feed(video_source) # Display the records stored in MongoDB with latest records on top st.markdown("### MongoDB Records") records = collection.find().sort("timestamp", -1) # Sort records by timestamp in descending order for record in records: col1, col2, col3 = st.columns([3, 3, 1]) with col1: st.write(f"**Name**: {record['name']}") with col2: st.write(f"**Emotion**: {record['emotion']}") with col3: st.write(f"**Timestamp**: {record['timestamp']}") # Delete record button delete_button = st.button(f"Delete {record['_id']}", key=record['_id']) if delete_button: collection.delete_one({"_id": record["_id"]}) st.success(f"Record with ID {record['_id']} has been deleted.")