Update app.py
Browse files
app.py
CHANGED
@@ -6,15 +6,29 @@ import torch
|
|
6 |
from facenet_pytorch import MTCNN, InceptionResnetV1
|
7 |
from keras.models import load_model
|
8 |
from PIL import Image
|
9 |
-
import
|
10 |
import os
|
11 |
import tempfile
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Page title
|
20 |
st.markdown("<h1 style='text-align: center;'>Emotion Detection with Face Recognition</h1>", unsafe_allow_html=True)
|
@@ -97,16 +111,17 @@ def process_frame(frame):
|
|
97 |
|
98 |
name = recognize_face(face_embedding)
|
99 |
|
100 |
-
# Save record in
|
101 |
if name != "Unknown":
|
102 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
110 |
|
111 |
# Display result
|
112 |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
@@ -157,11 +172,16 @@ elif upload_choice == "Upload Video":
|
|
157 |
video_source = cv2.VideoCapture(tfile.name)
|
158 |
video_feed(video_source)
|
159 |
|
160 |
-
# Display recent
|
161 |
st.markdown("### Recent Records")
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
163 |
for record in records:
|
164 |
col1, col2, col3 = st.columns(3)
|
165 |
-
col1.write(f"**Name**: {record[
|
166 |
-
col2.write(f"**Emotion**: {record[
|
167 |
-
col3.write(f"**Timestamp**: {record[
|
|
|
6 |
from facenet_pytorch import MTCNN, InceptionResnetV1
|
7 |
from keras.models import load_model
|
8 |
from PIL import Image
|
9 |
+
import sqlite3
|
10 |
import os
|
11 |
import tempfile
|
12 |
|
13 |
+
# SQLite Database Connection
|
14 |
+
DB_NAME = "emotion_detection.db"
|
15 |
+
|
16 |
+
# Initialize SQLite Database
|
17 |
+
def initialize_database():
|
18 |
+
conn = sqlite3.connect(DB_NAME)
|
19 |
+
cursor = conn.cursor()
|
20 |
+
cursor.execute("""
|
21 |
+
CREATE TABLE IF NOT EXISTS face_data (
|
22 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
23 |
+
name TEXT NOT NULL,
|
24 |
+
emotion TEXT NOT NULL,
|
25 |
+
timestamp TEXT NOT NULL
|
26 |
+
)
|
27 |
+
""")
|
28 |
+
conn.commit()
|
29 |
+
conn.close()
|
30 |
+
|
31 |
+
initialize_database()
|
32 |
|
33 |
# Page title
|
34 |
st.markdown("<h1 style='text-align: center;'>Emotion Detection with Face Recognition</h1>", unsafe_allow_html=True)
|
|
|
111 |
|
112 |
name = recognize_face(face_embedding)
|
113 |
|
114 |
+
# Save record in SQLite
|
115 |
if name != "Unknown":
|
116 |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
117 |
+
conn = sqlite3.connect(DB_NAME)
|
118 |
+
cursor = conn.cursor()
|
119 |
+
cursor.execute("""
|
120 |
+
INSERT INTO face_data (name, emotion, timestamp)
|
121 |
+
VALUES (?, ?, ?)
|
122 |
+
""", (name, emotion, timestamp))
|
123 |
+
conn.commit()
|
124 |
+
conn.close()
|
125 |
|
126 |
# Display result
|
127 |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
|
|
172 |
video_source = cv2.VideoCapture(tfile.name)
|
173 |
video_feed(video_source)
|
174 |
|
175 |
+
# Display recent SQLite records
|
176 |
st.markdown("### Recent Records")
|
177 |
+
conn = sqlite3.connect(DB_NAME)
|
178 |
+
cursor = conn.cursor()
|
179 |
+
cursor.execute("SELECT name, emotion, timestamp FROM face_data ORDER BY timestamp DESC LIMIT 5")
|
180 |
+
records = cursor.fetchall()
|
181 |
+
conn.close()
|
182 |
+
|
183 |
for record in records:
|
184 |
col1, col2, col3 = st.columns(3)
|
185 |
+
col1.write(f"**Name**: {record[0]}")
|
186 |
+
col2.write(f"**Emotion**: {record[1]}")
|
187 |
+
col3.write(f"**Timestamp**: {record[2]}")
|