Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import numpy as np
|
|
4 |
import time
|
5 |
import os
|
6 |
from keras.models import load_model
|
7 |
-
import face_recognition
|
8 |
from PIL import Image
|
9 |
import tempfile
|
10 |
|
@@ -37,10 +36,13 @@ def load_known_faces():
|
|
37 |
for image_name in os.listdir(folder_path):
|
38 |
if image_name.endswith(('.jpg', '.jpeg', '.png')):
|
39 |
image_path = os.path.join(folder_path, image_name)
|
40 |
-
image =
|
41 |
-
|
|
|
|
|
|
|
42 |
if encoding:
|
43 |
-
known_faces.append(encoding
|
44 |
known_names.append(image_name.split('.')[0]) # Assuming file name is the person's name
|
45 |
load_known_faces()
|
46 |
|
@@ -63,13 +65,11 @@ def process_frame(frame):
|
|
63 |
predictions = model.predict(face_roi)
|
64 |
emotion = emotion_labels[np.argmax(predictions[0])]
|
65 |
|
66 |
-
# Face recognition
|
67 |
-
|
68 |
-
matches = face_recognition.compare_faces(known_faces, face_encoding)
|
69 |
name = "Unknown"
|
70 |
-
if
|
71 |
-
|
72 |
-
name = known_names[first_match_index]
|
73 |
|
74 |
# Draw bounding box and label on the frame
|
75 |
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
|
|
4 |
import time
|
5 |
import os
|
6 |
from keras.models import load_model
|
|
|
7 |
from PIL import Image
|
8 |
import tempfile
|
9 |
|
|
|
36 |
for image_name in os.listdir(folder_path):
|
37 |
if image_name.endswith(('.jpg', '.jpeg', '.png')):
|
38 |
image_path = os.path.join(folder_path, image_name)
|
39 |
+
image = cv2.imread(image_path)
|
40 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
41 |
+
faces = cv2.face.LBPHFaceRecognizer_create()
|
42 |
+
faces.train([gray], np.array([0])) # This is simplified, train with multiple images
|
43 |
+
encoding = faces.getHistograms()
|
44 |
if encoding:
|
45 |
+
known_faces.append(encoding)
|
46 |
known_names.append(image_name.split('.')[0]) # Assuming file name is the person's name
|
47 |
load_known_faces()
|
48 |
|
|
|
65 |
predictions = model.predict(face_roi)
|
66 |
emotion = emotion_labels[np.argmax(predictions[0])]
|
67 |
|
68 |
+
# Face recognition using LBPH
|
69 |
+
label, confidence = cv2.face.LBPHFaceRecognizer_create().predict(roi_gray)
|
|
|
70 |
name = "Unknown"
|
71 |
+
if confidence < 100:
|
72 |
+
name = known_names[label]
|
|
|
73 |
|
74 |
# Draw bounding box and label on the frame
|
75 |
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|