LovnishVerma's picture
Update app.py
3c41a6c verified
raw
history blame
6.97 kB
import streamlit as st
import cv2
import numpy as np
import time
import os
from keras.models import load_model
from PIL import Image
import pymongo
from datetime import datetime
import tempfile
from facenet_pytorch import MTCNN
# MongoDB Atlas Connection String
MONGO_URI = "mongodb+srv://test:[email protected]/?retryWrites=true&w=majority"
# Connect to MongoDB
client = pymongo.MongoClient(MONGO_URI)
db = client.get_database("emotion_detection")
collection = db.get_collection("face_data")
# Larger title
st.markdown("<h1 style='text-align: center;'>Emotion Detection with Face Recognition</h1>", unsafe_allow_html=True)
# Smaller subtitle
st.markdown("<h3 style='text-align: center;'>angry, fear, happy, neutral, sad, surprise</h3>", unsafe_allow_html=True)
# Start time for measuring performance
start = time.time()
# Load the emotion detection model
@st.cache_resource
def load_emotion_model():
model = load_model('CNN_Model_acc_75.h5') # Ensure this file is in your Space
return model
model = load_emotion_model()
print("Time taken to load model: ", time.time() - start)
# Emotion labels
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
# Initialize MTCNN for face detection
mtcnn = MTCNN()
# Load known faces and names
known_faces = []
known_names = []
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
def load_known_faces():
folder_path = "known_faces" # Folder containing known face images
for image_name in os.listdir(folder_path):
if image_name.endswith(('.jpg', '.jpeg', '.png')):
image_path = os.path.join(folder_path, image_name)
image = cv2.imread(image_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect face in the image using mtcnn
faces, _ = mtcnn.detect(image) # Use the correct method detect()
if faces is not None:
for face in faces:
x, y, w, h = face[0], face[1], face[2], face[3]
roi_gray = gray[y:y+h, x:x+w]
known_faces.append(roi_gray)
known_names.append(image_name.split('.')[0]) # Assuming file name is the person's name
# Train the recognizer with the known faces
face_recognizer.train(known_faces, np.array([i for i in range(len(known_faces))]))
load_known_faces()
# Process a single frame
def process_frame(frame):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces, _ = mtcnn.detect(frame) # Use the correct detect method
result_text = "" # Initialize result text
if faces is not None and len(faces) > 0:
for face in faces:
x, y, w, h = face[0], face[1], face[2], face[3]
roi_color = frame[y:y+h, x:x+w]
roi_gray = gray[y:y+h, x:x+w]
# Apply histogram equalization for better feature extraction
roi_gray = cv2.equalizeHist(roi_gray)
face_roi = cv2.resize(roi_color, (48, 48))
face_roi = cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB)
face_roi = np.expand_dims(face_roi, axis=0) / 255.0 # Normalize
# Emotion detection
predictions = model.predict(face_roi)
emotion = emotion_labels[np.argmax(predictions[0])]
# Face recognition
name = "Unknown"
label, confidence = face_recognizer.predict(roi_gray)
if confidence < 100:
name = known_names[label]
# Format result text
result_text = f"{name} is feeling {emotion}"
# Save data to MongoDB if face is recognized (name != Unknown)
if name != "Unknown":
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
document = {
"name": name,
"emotion": emotion,
"timestamp": timestamp
}
# Insert the data into MongoDB
collection.insert_one(document)
print(f"Data inserted into MongoDB: {document}")
# Draw bounding box and label
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(frame, result_text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
return frame, result_text
# Video feed display
def video_feed(video_source):
frame_placeholder = st.empty() # Placeholder for displaying video frames
text_placeholder = st.empty() # Placeholder for displaying result text
while True:
ret, frame = video_source.read()
if not ret:
break
frame, result_text = process_frame(frame)
# Display frame and result text
frame_placeholder.image(frame, channels="BGR", use_column_width=True)
text_placeholder.markdown(f"<h3 style='text-align: center;'>{result_text}</h3>", unsafe_allow_html=True)
# Sidebar for user input source selection
upload_choice = st.sidebar.radio("Choose Input Source", ["Upload Image", "Upload Video", "Camera"])
if upload_choice == "Camera":
image = st.camera_input("Take a picture")
if image:
frame = np.array(Image.open(image))
frame, result_text = process_frame(frame)
st.image(frame, caption='Processed Image', use_column_width=True)
st.markdown(f"<h3 style='text-align: center;'>{result_text}</h3>", unsafe_allow_html=True)
elif upload_choice == "Upload Image":
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg", "gif"])
if uploaded_image:
image = Image.open(uploaded_image)
frame = np.array(image)
frame, result_text = process_frame(frame)
st.image(frame, caption='Processed Image', use_column_width=True)
st.markdown(f"<h3 style='text-align: center;'>{result_text}</h3>", unsafe_allow_html=True)
elif upload_choice == "Upload Video":
uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"])
if uploaded_video:
with tempfile.NamedTemporaryFile(delete=False) as tfile:
tfile.write(uploaded_video.read())
video_source = cv2.VideoCapture(tfile.name)
video_feed(video_source)
# Display the records stored in MongoDB with latest records on top
st.markdown("### MongoDB Records")
records = collection.find().sort("timestamp", -1) # Sort records by timestamp in descending order
for record in records:
col1, col2, col3 = st.columns([3, 3, 1])
with col1:
st.write(f"**Name**: {record['name']}")
with col2:
st.write(f"**Emotion**: {record['emotion']}")
with col3:
st.write(f"**Timestamp**: {record['timestamp']}")
# Delete record button
delete_button = st.button(f"Delete {record['_id']}", key=record['_id'])
if delete_button:
collection.delete_one({"_id": record["_id"]})
st.success(f"Record with ID {record['_id']} has been deleted.")