File size: 8,384 Bytes
31bb578
 
 
 
 
6d266bf
 
31bb578
 
 
6d266bf
 
 
31bb578
6d266bf
31bb578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d266bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31bb578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d266bf
 
31bb578
 
 
 
6d266bf
31bb578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d266bf
 
31bb578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
import torch
import fitz
import pytesseract
import re
import os
import google.generativeai as genai
from PIL import Image, ImageEnhance, ImageFilter
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM

# Configure Gemini (PaLM) API
genai.configure(api_key=os.getenv("PALM_API_KEY"))
model = genai.GenerativeModel("gemini-pro")

# Translation model (e.g., for Hindi)
translation_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
translation_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
translator = pipeline("translation", model=translation_model, tokenizer=translation_tokenizer)

language_models = {
    "Hindi": translator,
}

# Lab thresholds for rule-based explanation
lab_thresholds = {
    # Blood Parameters
    "Hemoglobin": {"low": 12.0, "high": 18.0, "unit": "g/dL"},
    "Total Erythrocytes": {"low": 4.5, "high": 6.0, "unit": "million/µL"},
    "HCT": {"low": 36.0, "high": 50.0, "unit": "%"},
    "MCV": {"low": 80.0, "high": 100.0, "unit": "fL"},
    "MCH": {"low": 27.0, "high": 33.0, "unit": "pg"},
    "MCHC": {"low": 32.0, "high": 36.0, "unit": "g/dL"},
    "RDW": {"low": 11.5, "high": 14.5, "unit": "%"},
    "Platelets": {"low": 150, "high": 450, "unit": "thousand/µL"},
    "MPV": {"low": 7.5, "high": 11.5, "unit": "fL"},

    # White Blood Cells
    "WBC": {"low": 4.0, "high": 11.0, "unit": "thousand/µL"},
    "Neutrophils": {"low": 40, "high": 75, "unit": "%"},
    "Lymphocytes": {"low": 20, "high": 40, "unit": "%"},
    "Monocytes": {"low": 2, "high": 8, "unit": "%"},
    "Eosinophils": {"low": 1, "high": 6, "unit": "%"},
    "Basophils": {"low": 0, "high": 1, "unit": "%"},

    # Kidney Function
    "Creatinine": {"low": 0.6, "high": 1.3, "unit": "mg/dL"},
    "BUN": {"low": 7, "high": 20, "unit": "mg/dL"},
    "Urea": {"low": 10, "high": 50, "unit": "mg/dL"},

    # Liver Function
    "Bilirubin": {"low": 0.1, "high": 1.2, "unit": "mg/dL"},
    "SGPT": {"low": 7, "high": 56, "unit": "U/L"},  # ALT
    "SGOT": {"low": 8, "high": 45, "unit": "U/L"},  # AST
    "Alkaline Phosphatase": {"low": 44, "high": 147, "unit": "U/L"},

    # Lipid Profile
    "HDL": {"low": 40, "high": 60, "unit": "mg/dL"},
    "LDL": {"low": 0, "high": 100, "unit": "mg/dL"},
    "Total Cholesterol": {"low": 125, "high": 200, "unit": "mg/dL"},
    "Triglycerides": {"low": 0, "high": 150, "unit": "mg/dL"},

    # Thyroid
    "TSH": {"low": 0.4, "high": 4.0, "unit": "mIU/L"},
    "T3": {"low": 80, "high": 200, "unit": "ng/dL"},
    "T4": {"low": 4.5, "high": 12.5, "unit": "µg/dL"},

    # Diabetes / Sugar
    "Glucose": {"low": 70, "high": 140, "unit": "mg/dL"},
    "HbA1c": {"low": 4.0, "high": 5.6, "unit": "%"},
    "Fasting Blood Sugar": {"low": 70, "high": 99, "unit": "mg/dL"},
    "Postprandial Blood Sugar": {"low": 70, "high": 140, "unit": "mg/dL"},

    # Electrolytes
    "Sodium": {"low": 135, "high": 145, "unit": "mmol/L"},
    "Potassium": {"low": 3.5, "high": 5.0, "unit": "mmol/L"},
    "Chloride": {"low": 96, "high": 106, "unit": "mmol/L"},
    "Calcium": {"low": 8.5, "high": 10.5, "unit": "mg/dL"},
    "Uric Acid": {"low": 3.5, "high": 7.2, "unit": "mg/dL"},

    # Inflammation Markers
    "CRP": {"low": 0, "high": 3, "unit": "mg/L"},
    "ESR": {"low": 0, "high": 20, "unit": "mm/hr"},

    # Vitamins
    "Vitamin D": {"low": 20, "high": 50, "unit": "ng/mL"},
    "Vitamin B12": {"low": 200, "high": 900, "unit": "pg/mL"},

    # Aliases
    "ALT": {"low": 7, "high": 56, "unit": "U/L"},
    "AST": {"low": 8, "high": 45, "unit": "U/L"},
}

def preprocess_image(image_path):
    image = Image.open(image_path)
    image = image.convert('L')
    image = image.filter(ImageFilter.MedianFilter())
    image = ImageEnhance.Contrast(image).enhance(2)
    return image

def summarize_with_gemini(cleaned_lines):
    prompt = f"""
You are a medical assistant. Summarize this lab report in clear, simple language:
1. Summary in 2–3 lines
2. Explain abnormal values
3. List health concerns (if any) in bullet points

Data:
{chr(10).join(cleaned_lines[:6])}
"""
    try:
        response = model.generate_content(prompt)
        return response.text.strip() if response and response.text else "(No summary returned)"
    except Exception as e:
        return f"(Gemini summarization failed: {e})"

def ocr_and_explain(file, language):
    if not file:
        return "Please upload a valid report.", ""

    file_path = file.name
    text = ""

    try:
        if file_path.lower().endswith(".pdf"):
            doc = fitz.open(file_path)
            for page in doc:
                text += page.get_text()
        else:
            image = preprocess_image(file_path)
            text = pytesseract.image_to_string(image, lang='eng', config='--psm 6')
    except Exception as e:
        return f"Error reading file: {e}", ""

    if not text.strip():
        return "No readable text found in the report.", ""

    rule_lines, cleaned_lines = [], []

    for term, values in lab_thresholds.items():
        for line in text.splitlines():
            if term.lower() in line.lower():
                try:
                    value_str = ''.join(c for c in line if c.isdigit() or c in ['.', '-'])
                    value = float(value_str)
                    status = "Low" if value < values["low"] else "High" if value > values["high"] else "Normal"

                    html_line = (
                        f"<b>{term}</b>: {value:.2f} {values['unit']} → <b>{status}</b><br>"
                        f"<i>Reference Range: {values['low']}-{values['high']} {values['unit']}</i><br><br>"
                    )
                    rule_lines.append(html_line)
                    cleaned_lines.append(f"{term}: {value:.2f} {values['unit']}{status} (Normal: {values['low']}-{values['high']} {values['unit']})")
                except:
                    continue

    rule_explanation = "\n".join(rule_lines) if rule_lines else "No known lab terms detected."

    # 🔁 Gemini summary
    gpt_summary = summarize_with_gemini(cleaned_lines)

    final_output = (
        "<h4 style='color:#ffa500;'>📌 Rule-Based Results:</h4><br>" +
        rule_explanation +
        "<hr><h4 style='color:#77dd77;'>🧠 Gemini Summary:</h4><br>" +
        gpt_summary
    )

    if language != "English" and language in language_models:
        try:
            final_output = language_models[language](final_output)[0]['translation_text']
        except Exception as e:
            final_output = f"Translation failed: {e}"

    return text, final_output

def report_analyzer_tab():
    gr.Markdown("## 🧾 Upload Report & Get Explanation", elem_classes="centered-text")

    with gr.Row():
        with gr.Column():
            upload_file = gr.File(
                type="filepath",
                label="Upload Lab Report or Prescription (.jpg, .png, .pdf)",
                file_types=[".png", ".jpg", ".jpeg", ".pdf"]
            )
            language_select = gr.Radio(
                choices=["English", "Hindi"],
                value="English",
                label="Select Output Language"
            )
            with gr.Row():
                process_btn = gr.Button("Process", elem_id="process-btn")
                clear_btn = gr.Button("Clear")

        with gr.Column():
            processing_status = gr.HTML()
            output_box = gr.HTML("""<div style="background:#1e1e1e; padding:15px; border-radius:10px;">
                                    <h4 style="color:#ffffff;">📋 Final Explanation Output</h4>""")
            output_explanation = gr.HTML()
            output_close = gr.HTML("</div>")

            with gr.Accordion("📄 Extracted Report Text (Click to View)", open=False):
                extracted_text = gr.Textbox(label=None, lines=14, interactive=False)

    process_btn.click(
        lambda: "<div style='color:#ffa500; font-weight:bold;'>⏳ Processing...</div>",
        inputs=[],
        outputs=processing_status
    ).then(
        ocr_and_explain,
        inputs=[upload_file, language_select],
        outputs=[extracted_text, output_explanation]
    ).then(
        lambda: "",
        inputs=[],
        outputs=processing_status
    )

    clear_btn.click(
        lambda: ("", "", ""),
        inputs=[],
        outputs=[extracted_text, output_explanation, processing_status]
    )