Spaces:
Paused
Paused
File size: 8,384 Bytes
31bb578 6d266bf 31bb578 6d266bf 31bb578 6d266bf 31bb578 6d266bf 31bb578 6d266bf 31bb578 6d266bf 31bb578 6d266bf 31bb578 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import gradio as gr
import torch
import fitz
import pytesseract
import re
import os
import google.generativeai as genai
from PIL import Image, ImageEnhance, ImageFilter
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
# Configure Gemini (PaLM) API
genai.configure(api_key=os.getenv("PALM_API_KEY"))
model = genai.GenerativeModel("gemini-pro")
# Translation model (e.g., for Hindi)
translation_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
translation_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
translator = pipeline("translation", model=translation_model, tokenizer=translation_tokenizer)
language_models = {
"Hindi": translator,
}
# Lab thresholds for rule-based explanation
lab_thresholds = {
# Blood Parameters
"Hemoglobin": {"low": 12.0, "high": 18.0, "unit": "g/dL"},
"Total Erythrocytes": {"low": 4.5, "high": 6.0, "unit": "million/µL"},
"HCT": {"low": 36.0, "high": 50.0, "unit": "%"},
"MCV": {"low": 80.0, "high": 100.0, "unit": "fL"},
"MCH": {"low": 27.0, "high": 33.0, "unit": "pg"},
"MCHC": {"low": 32.0, "high": 36.0, "unit": "g/dL"},
"RDW": {"low": 11.5, "high": 14.5, "unit": "%"},
"Platelets": {"low": 150, "high": 450, "unit": "thousand/µL"},
"MPV": {"low": 7.5, "high": 11.5, "unit": "fL"},
# White Blood Cells
"WBC": {"low": 4.0, "high": 11.0, "unit": "thousand/µL"},
"Neutrophils": {"low": 40, "high": 75, "unit": "%"},
"Lymphocytes": {"low": 20, "high": 40, "unit": "%"},
"Monocytes": {"low": 2, "high": 8, "unit": "%"},
"Eosinophils": {"low": 1, "high": 6, "unit": "%"},
"Basophils": {"low": 0, "high": 1, "unit": "%"},
# Kidney Function
"Creatinine": {"low": 0.6, "high": 1.3, "unit": "mg/dL"},
"BUN": {"low": 7, "high": 20, "unit": "mg/dL"},
"Urea": {"low": 10, "high": 50, "unit": "mg/dL"},
# Liver Function
"Bilirubin": {"low": 0.1, "high": 1.2, "unit": "mg/dL"},
"SGPT": {"low": 7, "high": 56, "unit": "U/L"}, # ALT
"SGOT": {"low": 8, "high": 45, "unit": "U/L"}, # AST
"Alkaline Phosphatase": {"low": 44, "high": 147, "unit": "U/L"},
# Lipid Profile
"HDL": {"low": 40, "high": 60, "unit": "mg/dL"},
"LDL": {"low": 0, "high": 100, "unit": "mg/dL"},
"Total Cholesterol": {"low": 125, "high": 200, "unit": "mg/dL"},
"Triglycerides": {"low": 0, "high": 150, "unit": "mg/dL"},
# Thyroid
"TSH": {"low": 0.4, "high": 4.0, "unit": "mIU/L"},
"T3": {"low": 80, "high": 200, "unit": "ng/dL"},
"T4": {"low": 4.5, "high": 12.5, "unit": "µg/dL"},
# Diabetes / Sugar
"Glucose": {"low": 70, "high": 140, "unit": "mg/dL"},
"HbA1c": {"low": 4.0, "high": 5.6, "unit": "%"},
"Fasting Blood Sugar": {"low": 70, "high": 99, "unit": "mg/dL"},
"Postprandial Blood Sugar": {"low": 70, "high": 140, "unit": "mg/dL"},
# Electrolytes
"Sodium": {"low": 135, "high": 145, "unit": "mmol/L"},
"Potassium": {"low": 3.5, "high": 5.0, "unit": "mmol/L"},
"Chloride": {"low": 96, "high": 106, "unit": "mmol/L"},
"Calcium": {"low": 8.5, "high": 10.5, "unit": "mg/dL"},
"Uric Acid": {"low": 3.5, "high": 7.2, "unit": "mg/dL"},
# Inflammation Markers
"CRP": {"low": 0, "high": 3, "unit": "mg/L"},
"ESR": {"low": 0, "high": 20, "unit": "mm/hr"},
# Vitamins
"Vitamin D": {"low": 20, "high": 50, "unit": "ng/mL"},
"Vitamin B12": {"low": 200, "high": 900, "unit": "pg/mL"},
# Aliases
"ALT": {"low": 7, "high": 56, "unit": "U/L"},
"AST": {"low": 8, "high": 45, "unit": "U/L"},
}
def preprocess_image(image_path):
image = Image.open(image_path)
image = image.convert('L')
image = image.filter(ImageFilter.MedianFilter())
image = ImageEnhance.Contrast(image).enhance(2)
return image
def summarize_with_gemini(cleaned_lines):
prompt = f"""
You are a medical assistant. Summarize this lab report in clear, simple language:
1. Summary in 2–3 lines
2. Explain abnormal values
3. List health concerns (if any) in bullet points
Data:
{chr(10).join(cleaned_lines[:6])}
"""
try:
response = model.generate_content(prompt)
return response.text.strip() if response and response.text else "(No summary returned)"
except Exception as e:
return f"(Gemini summarization failed: {e})"
def ocr_and_explain(file, language):
if not file:
return "Please upload a valid report.", ""
file_path = file.name
text = ""
try:
if file_path.lower().endswith(".pdf"):
doc = fitz.open(file_path)
for page in doc:
text += page.get_text()
else:
image = preprocess_image(file_path)
text = pytesseract.image_to_string(image, lang='eng', config='--psm 6')
except Exception as e:
return f"Error reading file: {e}", ""
if not text.strip():
return "No readable text found in the report.", ""
rule_lines, cleaned_lines = [], []
for term, values in lab_thresholds.items():
for line in text.splitlines():
if term.lower() in line.lower():
try:
value_str = ''.join(c for c in line if c.isdigit() or c in ['.', '-'])
value = float(value_str)
status = "Low" if value < values["low"] else "High" if value > values["high"] else "Normal"
html_line = (
f"<b>{term}</b>: {value:.2f} {values['unit']} → <b>{status}</b><br>"
f"<i>Reference Range: {values['low']}-{values['high']} {values['unit']}</i><br><br>"
)
rule_lines.append(html_line)
cleaned_lines.append(f"{term}: {value:.2f} {values['unit']} → {status} (Normal: {values['low']}-{values['high']} {values['unit']})")
except:
continue
rule_explanation = "\n".join(rule_lines) if rule_lines else "No known lab terms detected."
# 🔁 Gemini summary
gpt_summary = summarize_with_gemini(cleaned_lines)
final_output = (
"<h4 style='color:#ffa500;'>📌 Rule-Based Results:</h4><br>" +
rule_explanation +
"<hr><h4 style='color:#77dd77;'>🧠 Gemini Summary:</h4><br>" +
gpt_summary
)
if language != "English" and language in language_models:
try:
final_output = language_models[language](final_output)[0]['translation_text']
except Exception as e:
final_output = f"Translation failed: {e}"
return text, final_output
def report_analyzer_tab():
gr.Markdown("## 🧾 Upload Report & Get Explanation", elem_classes="centered-text")
with gr.Row():
with gr.Column():
upload_file = gr.File(
type="filepath",
label="Upload Lab Report or Prescription (.jpg, .png, .pdf)",
file_types=[".png", ".jpg", ".jpeg", ".pdf"]
)
language_select = gr.Radio(
choices=["English", "Hindi"],
value="English",
label="Select Output Language"
)
with gr.Row():
process_btn = gr.Button("Process", elem_id="process-btn")
clear_btn = gr.Button("Clear")
with gr.Column():
processing_status = gr.HTML()
output_box = gr.HTML("""<div style="background:#1e1e1e; padding:15px; border-radius:10px;">
<h4 style="color:#ffffff;">📋 Final Explanation Output</h4>""")
output_explanation = gr.HTML()
output_close = gr.HTML("</div>")
with gr.Accordion("📄 Extracted Report Text (Click to View)", open=False):
extracted_text = gr.Textbox(label=None, lines=14, interactive=False)
process_btn.click(
lambda: "<div style='color:#ffa500; font-weight:bold;'>⏳ Processing...</div>",
inputs=[],
outputs=processing_status
).then(
ocr_and_explain,
inputs=[upload_file, language_select],
outputs=[extracted_text, output_explanation]
).then(
lambda: "",
inputs=[],
outputs=processing_status
)
clear_btn.click(
lambda: ("", "", ""),
inputs=[],
outputs=[extracted_text, output_explanation, processing_status]
) |