baserag_hf / app.py
ravi259's picture
smaller faiss db
71fc0b2
import streamlit as st #Web App
import numpy as np #Image Processing
import pandas as pd
import time
import os
import tiktoken
from io import StringIO
import time
import json
import requests
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
#from langchain_community.embeddings import OpenAIEmbeddings
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from dotenv import load_dotenv,find_dotenv
#from langchain_community.chat_models import ChatOpenAI
from langchain_openai import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
from dotenv import load_dotenv
from htmlTemplates import bot_template, user_template, css
load_dotenv()
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
def load_knowledgeBase():
embeddings=OpenAIEmbeddings(api_key=OPENAI_API_KEY)
DB_FAISS_PATH = "./vectorstore/db_faiss/"
db = FAISS.load_local(
DB_FAISS_PATH,
embeddings,
allow_dangerous_deserialization=True,
index_name="njmvc_Index"
)
return db
def load_prompt():
prompt = """ You are helping students to pass NJMVC Knowledge Test. Provide a Single multiple choice question with 4 options to choose from.
Use the information from context provided below to provide the question and answer choices.
context = {context}
question = {question}
if the context is not available, say I cannot give Question"
"""
prompt = ChatPromptTemplate.from_template(prompt)
return prompt
#function to load the OPENAI LLM
def load_llm():
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, api_key=OPENAI_API_KEY)
return llm
#knowledgeBase=load_knowledgeBase()
prompt = load_prompt()
llm=load_llm()
def get_conversation_chain(vectorstore, llm):
llm = llm
#llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
memory = ConversationBufferMemory(memory_key="chat_history")
conversation_chain = ConversationChain(
llm=llm,
verbose=True,
memory=ConversationBufferMemory(),
)
return conversation_chain
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
def get_pdf_text(pdf_files):
text = ""
for pdf_file in pdf_files:
reader = PdfReader(pdf_file)
for page in reader.pages:
text += page.extract_text()
return text
def get_chunk_text(text):
text_splitter = CharacterTextSplitter(
separator = "\n",
chunk_size = 1000,
chunk_overlap = 200,
length_function = len
)
chunks = text_splitter.split_text(text)
return chunks
def handle_user_input(question):
response = st.session_state.conversation({'question':question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
def main():
st.set_page_config(page_title='NJMVC Knowledge Test with RAGAS', page_icon=':cars:')
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header('NJMVC Knowledge Test with RAGAS :cars:')
question = st.text_input("Input the Topic you want to test your knowledge: ")
if question:
#handle_user_input(question)
with st.spinner("Get ready..."):
text_chunks = get_chunk_text(question)
db = FAISS.load_local(folder_path="./vectorstore/db_faiss/",embeddings=OpenAIEmbeddings(api_key=OPENAI_API_KEY),allow_dangerous_deserialization=True, index_name="njmvc_Index")
searchDocs = db.similarity_search(question)
similar_embeddings=FAISS.from_documents(documents=searchDocs, embedding=OpenAIEmbeddings(api_key=OPENAI_API_KEY))
#creating the chain for integrating llm,prompt,stroutputparser
retriever = similar_embeddings.as_retriever()
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
#st.session_state.conversation = get_conversation_chain(vector_store)
response=rag_chain.invoke(question)
st.write(response)
st.write(searchDocs)
if __name__ == '__main__':
main()