import spaces

import os
import gradio as gr
import torch
from threading import Thread

from typing import Union
from pathlib import Path
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    PreTrainedModel,
    PreTrainedTokenizer,
    PreTrainedTokenizerFast,
    StoppingCriteria,
    StoppingCriteriaList,
    TextIteratorStreamer
)

ModelType = Union[PreTrainedModel]
TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]

MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4-9b-chat')
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)


def _resolve_path(path: Union[str, Path]) -> Path:
    return Path(path).expanduser().resolve()


def load_model_and_tokenizer(
        model_dir: Union[str, Path], trust_remote_code: bool = True
) -> tuple[ModelType, TokenizerType]:
    model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=trust_remote_code, device_map='auto')
    tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=trust_remote_code, use_fast=False)
    return model, tokenizer


model, tokenizer = load_model_and_tokenizer(MODEL_PATH, trust_remote_code=True)


class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = model.config.eos_token_id
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False


def parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f'<br></code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", "\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text

@spaces.GPU
def predict(history, max_length, top_p, temperature):
    stop = StopOnTokens()
    messages = []
    for idx, (user_msg, model_msg) in enumerate(history):
        if idx == len(history) - 1 and not model_msg:
            messages.append({"role": "user", "content": user_msg})
            break
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if model_msg:
            messages.append({"role": "assistant", "content": model_msg})

    model_inputs = tokenizer.apply_chat_template(messages,
                                                 add_generation_prompt=True,
                                                 tokenize=True,
                                                 return_tensors="pt").to(next(model.parameters()).device)
    streamer = TextIteratorStreamer(tokenizer, timeout=60, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = {
        "input_ids": model_inputs,
        "streamer": streamer,
        "max_new_tokens": max_length,
        "do_sample": True,
        "top_p": top_p,
        "temperature": temperature,
        "stopping_criteria": StoppingCriteriaList([stop]),
        "repetition_penalty": 1.2,
        "eos_token_id": model.config.eos_token_id,
    }
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    for new_token in streamer:
        if new_token:
            history[-1][1] += new_token
        yield history


with gr.Blocks() as demo:
    gr.HTML("""<h1 align="center">GLM-4-9B Gradio Simple Chat Demo</h1>""")
    chatbot = gr.Chatbot()

    with gr.Row():
        with gr.Column(scale=4):
            with gr.Column(scale=12):
                user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10, container=False)
            with gr.Column(min_width=32, scale=1):
                submitBtn = gr.Button("Submit")
        with gr.Column(scale=1):
            emptyBtn = gr.Button("Clear History")
            max_length = gr.Slider(0, 32768, value=8192, step=1.0, label="Maximum length", interactive=True)
            top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
            temperature = gr.Slider(0.01, 1, value=0.6, step=0.01, label="Temperature", interactive=True)


    def user(query, history):
        return "", history + [[parse_text(query), ""]]


    submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then(
        predict, [chatbot, max_length, top_p, temperature], chatbot
    )
    emptyBtn.click(lambda: None, None, chatbot, queue=False)

demo.queue().launch()