import streamlit as st import pickle import pandas as pd import numpy as np # Page Title with Style # st.title("🩸 Sepsis Prediction App") # Page Title with Style (Centered) st.markdown( f"""

🩸 Sepsis Prediction App

""", unsafe_allow_html=True ) st.markdown("---") st.image("https://dinizululawgroup.com/wp-content/uploads/2020/07/news.jpg") # Welcome Message with Style st.write( "👋 Welcome to the Sepsis Prediction App! Enter the medical data in the input fields below, " "click 'Predict Sepsis', and get the prediction result." ) # About Section with Style st.sidebar.title("ℹī¸ About") st.sidebar.info( "This app predicts sepsis based on medical input data. " "It uses a machine learning model trained on a dataset of sepsis cases." ) # Load the model and key components with open('model_and_key_components.pkl', 'rb') as file: loaded_components = pickle.load(file) loaded_model = loaded_components['model'] loaded_scaler = loaded_components['scaler'] # Data Fields data_fields = { "PRG": "Number of Pregnancies (applicable only to females)\n - The total number of pregnancies a female patient has experienced.", "PL": "Plasma Glucose Concentration (mg/dL)\n - The concentration of glucose in the patient's blood). It provides insights into the patient's blood sugar levels.", "PR": "Diastolic Blood Pressure (mm Hg)\n - The diastolic blood pressure, representing the pressure in the arteries when the heart is at rest between beats.", "SK": "Triceps Skinfold Thickness (mm)\n - The thickness of the skinfold on the triceps, measured in millimeters (mm). This measurement is often used to assess body fat percentage.", "TS": "2-hour Serum Insulin (mu U/ml)\n - The level of insulin in the patient's blood two hours after a meal, measured in micro international units per milliliter (mu U/ml).", "M11": "Body Mass Index (BMI) (weight in kg / {(height in m)}^2)\n - BMI provides a standardized measure that helps assess the degree of body fat and categorizes individuals into different weight status categories, such as underweight, normal weight, overweight, and obesity.", "BD2": "Diabetes pedigree function (mu U/ml)\n - The function provides information about the patient's family history of diabetes.", "Age": "Age of the Patient (years)\n - Age is an essential factor in medical assessments and can influence various health outcomes." } # Organize input fields into two columns col1, col2 = st.columns(2) # Initialize input_data dictionary input_data = {} # Function to preprocess input data def preprocess_input_data(input_data): numerical_cols = ['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age'] input_data_scaled = loaded_scaler.transform([list(input_data.values())]) return pd.DataFrame(input_data_scaled, columns=numerical_cols) # Function to make predictions def make_predictions(input_data_scaled_df): y_pred = loaded_model.predict(input_data_scaled_df) sepsis_mapping = {0: 'Negative', 1: 'Positive'} return sepsis_mapping[y_pred[0]] # Input Data Fields in two columns with col1: input_data["PRG"] = st.number_input("PRG: Number of Pregnancies", value=0.0) input_data["PL"] = st.number_input("PL: Plasma Glucose Concentration (mg/dL)", value=0.0) input_data["PR"] = st.number_input("PR: Diastolic Blood Pressure (mm Hg)", value=0.0) input_data["SK"] = st.number_input("SK: Triceps Skinfold Thickness (mm)", value=0.0) with col2: input_data["TS"] = st.number_input("TS: 2-Hour Serum Insulin (mu U/ml)", value=0.0) input_data["M11"] = st.number_input("M11: Body Mass Index (BMI)", value=0.0) input_data["BD2"] = st.number_input("BD2: Diabetes Pedigree Function (mu U/ml)", value=0.0) input_data["Age"] = st.slider("Age: Age of the patient (years)", 0, 100, 0) # Predict Button with Style if st.button("🔮 Predict Sepsis"): try: input_data_scaled_df = preprocess_input_data(input_data) sepsis_status = make_predictions(input_data_scaled_df) st.success(f"The predicted sepsis status is: {sepsis_status}") except Exception as e: st.error(f"An error occurred: {e}") # Display Data Fields and Descriptions st.sidebar.title("🔍 Data Fields") for field, description in data_fields.items(): st.sidebar.markdown(f"{field}: {description}")