rasmodev's picture
Update app.py
ea4062c
raw
history blame
4.45 kB
import streamlit as st
import pickle
import pandas as pd
import numpy as np
# Page Title with Style
# st.title("๐Ÿฉธ Sepsis Prediction App")
# Page Title with Style (Centered)
st.markdown(
f"""
<div style="text-align: center;">
<h1 style="color: #800000;">๐Ÿฉธ Sepsis Prediction App</h1>
</div>
""",
unsafe_allow_html=True
)
st.markdown("---")
st.image("https://dinizululawgroup.com/wp-content/uploads/2020/07/news.jpg")
# Welcome Message with Style
st.write(
"๐Ÿ‘‹ Welcome to the Sepsis Prediction App! Enter the medical data in the input fields below, "
"click 'Predict Sepsis', and get the prediction result."
)
# About Section with Style
st.sidebar.title("โ„น๏ธ About")
st.sidebar.info(
"This app predicts sepsis based on medical input data. "
"It uses a machine learning model trained on a dataset of sepsis cases."
)
# Load the model and key components
with open('model_and_key_components.pkl', 'rb') as file:
loaded_components = pickle.load(file)
loaded_model = loaded_components['model']
loaded_scaler = loaded_components['scaler']
# Data Fields
data_fields = {
"PRG": "Number of Pregnancies (applicable only to females)\n - The total number of pregnancies a female patient has experienced.",
"PL": "Plasma Glucose Concentration (mg/dL)\n - The concentration of glucose in the patient's blood). It provides insights into the patient's blood sugar levels.",
"PR": "Diastolic Blood Pressure (mm Hg)\n - The diastolic blood pressure, representing the pressure in the arteries when the heart is at rest between beats.",
"SK": "Triceps Skinfold Thickness (mm)\n - The thickness of the skinfold on the triceps, measured in millimeters (mm). This measurement is often used to assess body fat percentage.",
"TS": "2-hour Serum Insulin (mu U/ml)\n - The level of insulin in the patient's blood two hours after a meal, measured in micro international units per milliliter (mu U/ml).",
"M11": "Body Mass Index (BMI) (weight in kg / {(height in m)}^2)\n - BMI provides a standardized measure that helps assess the degree of body fat and categorizes individuals into different weight status categories, such as underweight, normal weight, overweight, and obesity.",
"BD2": "Diabetes pedigree function (mu U/ml)\n - The function provides information about the patient's family history of diabetes.",
"Age": "Age of the Patient (years)\n - Age is an essential factor in medical assessments and can influence various health outcomes."
}
# Organize input fields into two columns
col1, col2 = st.columns(2)
# Initialize input_data dictionary
input_data = {}
# Function to preprocess input data
def preprocess_input_data(input_data):
numerical_cols = ['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age']
input_data_scaled = loaded_scaler.transform([list(input_data.values())])
return pd.DataFrame(input_data_scaled, columns=numerical_cols)
# Function to make predictions
def make_predictions(input_data_scaled_df):
y_pred = loaded_model.predict(input_data_scaled_df)
sepsis_mapping = {0: 'Negative', 1: 'Positive'}
return sepsis_mapping[y_pred[0]]
# Input Data Fields in two columns
with col1:
input_data["PRG"] = st.number_input("PRG: Number of Pregnancies", value=0.0)
input_data["PL"] = st.number_input("PL: Plasma Glucose Concentration (mg/dL)", value=0.0)
input_data["PR"] = st.number_input("PR: Diastolic Blood Pressure (mm Hg)", value=0.0)
input_data["SK"] = st.number_input("SK: Triceps Skinfold Thickness (mm)", value=0.0)
with col2:
input_data["TS"] = st.number_input("TS: 2-Hour Serum Insulin (mu U/ml)", value=0.0)
input_data["M11"] = st.number_input("M11: Body Mass Index (BMI)", value=0.0)
input_data["BD2"] = st.number_input("BD2: Diabetes Pedigree Function (mu U/ml)", value=0.0)
input_data["Age"] = st.slider("Age: Age of the patient (years)", 0, 100, 0)
# Predict Button with Style
if st.button("๐Ÿ”ฎ Predict Sepsis"):
try:
input_data_scaled_df = preprocess_input_data(input_data)
sepsis_status = make_predictions(input_data_scaled_df)
st.success(f"The predicted sepsis status is: {sepsis_status}")
except Exception as e:
st.error(f"An error occurred: {e}")
# Display Data Fields and Descriptions
st.sidebar.title("๐Ÿ” Data Fields")
for field, description in data_fields.items():
st.sidebar.markdown(f"{field}: {description}")