|
import streamlit as st |
|
import pickle |
|
import pandas as pd |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
st.markdown( |
|
f""" |
|
<div style="text-align: center;"> |
|
<h1 style="color: #800000;">๐ฉธ Sepsis Prediction App</h1> |
|
</div> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
st.markdown( |
|
f""" |
|
<div style="text-align: center;"> |
|
<p>๐ Welcome to the Sepsis Prediction App!</p> |
|
</div> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
|
|
st.markdown( |
|
""" |
|
**Sepsis** is a critical medical condition triggered by the body's extreme response to an infection. It can lead to organ failure and, if not detected early, poses a serious threat to life. |
|
""" |
|
) |
|
|
|
|
|
st.markdown("๐ **Learn more about sepsis from [World Health Organization (WHO)](https://www.who.int/news-room/fact-sheets/detail/sepsis#:~:text=Overview,problems%20are%20at%20higher%20risk.)**") |
|
|
|
st.markdown("---") |
|
|
|
st.image("https://dinizululawgroup.com/wp-content/uploads/2020/07/news.jpg", width=700) |
|
|
|
|
|
st.write("Enter the medical data in the input fields below, then click 'Predict Sepsis', and get the patient's Sepsis prediction") |
|
|
|
|
|
st.sidebar.title("โน๏ธ About") |
|
st.sidebar.info( |
|
"This app harnesses the power of machine learning to predict the onset of sepsis based on medical input data. " |
|
"The app is meant to assist healthcare professionals to intervene promptly and save lives. " |
|
"It uses a machine learning model trained on a dataset of sepsis cases." |
|
) |
|
|
|
|
|
with open('model_and_key_components.pkl', 'rb') as file: |
|
loaded_components = pickle.load(file) |
|
|
|
loaded_model = loaded_components['model'] |
|
loaded_scaler = loaded_components['scaler'] |
|
|
|
|
|
data_fields = { |
|
"**PRG**": "**Number of Pregnancies (applicable only to females)**\n - The total number of pregnancies a female patient has experienced.", |
|
"**PL**": "**Plasma Glucose Concentration (mg/dL)**\n - The concentration of glucose in the patient's blood). It provides insights into the patient's blood sugar levels.", |
|
"**PR**": "**Diastolic Blood Pressure (mm Hg)**\n - The diastolic blood pressure, representing the pressure in the arteries when the heart is at rest between beats.", |
|
"**SK**": "**Triceps Skinfold Thickness (mm)**\n - The thickness of the skinfold on the triceps, measured in millimeters (mm). This measurement is often used to assess body fat percentage.", |
|
"**TS**": "**2-hour Serum Insulin (mu U/ml)**\n - The level of insulin in the patient's blood two hours after a meal, measured in micro international units per milliliter (mu U/ml).", |
|
"**M11**": "**Body Mass Index (BMI) (weight in kg / {(height in m)}^2)**\n - BMI provides a standardized measure that helps assess the degree of body fat and categorizes individuals into different weight status categories, such as underweight, normal weight, overweight, and obesity.", |
|
"**BD2**": "**Diabetes pedigree function (mu U/ml)**\n - The function provides information about the patient's family history of diabetes.", |
|
"**Age**": "**Age of the Patient (years)**\n - Age is an essential factor in medical assessments and can influence various health outcomes." |
|
} |
|
|
|
col1, col2 = st.columns(2) |
|
|
|
|
|
input_data = {} |
|
|
|
|
|
def preprocess_input_data(input_data): |
|
numerical_cols = ['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age'] |
|
input_data_scaled = loaded_scaler.transform([list(input_data.values())]) |
|
return pd.DataFrame(input_data_scaled, columns=numerical_cols) |
|
|
|
|
|
def make_predictions(input_data_scaled_df): |
|
y_pred = loaded_model.predict(input_data_scaled_df) |
|
sepsis_mapping = {0: 'Negative', 1: 'Positive'} |
|
return sepsis_mapping[y_pred[0]] |
|
|
|
|
|
with col1: |
|
input_data["PRG"] = st.slider("PRG: Number of Pregnancies", 0, 20, 0) |
|
input_data["PL"] = st.number_input("PL: Plasma Glucose Concentration (mg/dL)", value=0.0) |
|
input_data["PR"] = st.number_input("PR: Diastolic Blood Pressure (mm Hg)", value=0.0) |
|
input_data["SK"] = st.number_input("SK: Triceps Skinfold Thickness (mm)", value=0.0) |
|
|
|
with col2: |
|
input_data["TS"] = st.number_input("TS: 2-Hour Serum Insulin (mu U/ml)", value=0.0) |
|
input_data["M11"] = st.number_input("M11: Body Mass Index (BMI)", value=0.0) |
|
input_data["BD2"] = st.number_input("BD2: Diabetes Pedigree Function (mu U/ml)", value=0.0) |
|
input_data["Age"] = st.slider("Age: Age of the patient (years)", 0, 100, 0) |
|
|
|
|
|
if st.button("๐ฎ Predict Sepsis"): |
|
try: |
|
input_data_scaled_df = preprocess_input_data(input_data) |
|
sepsis_status = make_predictions(input_data_scaled_df) |
|
st.success(f"The predicted sepsis status is: {sepsis_status}") |
|
except Exception as e: |
|
st.error(f"An error occurred: {e}") |
|
|
|
|
|
st.sidebar.title("๐ Data Fields") |
|
for field, description in data_fields.items(): |
|
st.sidebar.markdown(f"{field}: {description}") |