File size: 6,965 Bytes
a562d9d dd8cdb5 988a745 3d9e875 bab442a 37401bd 3d9e875 08b59fb 3d9e875 37401bd 3d9e875 37401bd dd8cdb5 8a5bdef ea42492 399bafe 2052bf2 ab0a89f dd8cdb5 8debddb dd8cdb5 c317fae d47c95d c317fae 35ba659 f756bc2 c317fae 3ae0d57 a562d9d a9cdfb1 4610943 d2322c7 318b7fb c64d12f a562d9d ed34a12 a562d9d 318b7fb 776bed5 ea4062c 318b7fb ea4062c 318b7fb 8a5bdef 0b12140 a562d9d 7001efb aa5f48f 7001efb 3220865 7001efb 3220865 72b51a5 126c621 72b51a5 7001efb 9c20e70 b05a8b1 32c6712 9c20e70 126c621 72b51a5 a562d9d 8a5bdef a562d9d 78b2f8d 66a35a9 d0fd4bc 66a35a9 e659ca5 9eab577 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import streamlit as st
import pickle
import pandas as pd
import numpy as np
# Page Title with Style
st.markdown(
f"""
<div style="text-align: center;">
<h1 style="color: #800000;">๐ฉธ Sepsis Prediction App</h1>
</div>
""",
unsafe_allow_html=True
)
# Welcome Message with Style (Centered)
st.markdown(
f"""
<div style="text-align: center;">
<p>๐ Welcome to the Sepsis Prediction App!</p>
</div>
""",
unsafe_allow_html=True
)
# Sepsis Information
st.markdown(
"""
**Sepsis** is a critical medical condition triggered by the body's extreme response to an infection. It can lead to organ failure and, if not detected early, poses a serious threat to life.
"""
)
# Link to WHO Fact Sheet on Sepsis
st.markdown("๐ **Learn more about sepsis from [World Health Organization (WHO)](https://www.who.int/news-room/fact-sheets/detail/sepsis#:~:text=Overview,problems%20are%20at%20higher%20risk.)**")
st.markdown("---")
st.image("https://dinizululawgroup.com/wp-content/uploads/2020/07/news.jpg", width=700)
# Additional Information for Sample Prediction
st.write("๐ To make a sample prediction, you can refer to the training dataset information available in the sidebar.")
st.write("๐ Enter the medical data in the input fields below, then click 'Predict Sepsis', and get the patient's Sepsis status prediction.")
# About Section with Style
st.sidebar.title("โน๏ธ About")
st.sidebar.info(
"This app predicts sepsis onset using machine learning on medical data, aiding timely intervention by healthcare professionals. "
"It utilizes a model trained on a sepsis dataset."
)
# Load The Train Dataset
train_df = pd.read_csv("Train.csv", index_col=None)
# Training Dataset Information in the sidebar
st.sidebar.markdown("๐ **Training Dataset Information:**")
st.sidebar.write("The model is trained on a sepsis dataset. Here's an overview of the dataset:")
st.sidebar.write(train_df.head())
# Auto-expand sidebar code
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 100%;
}
</style>
""",
unsafe_allow_html=True
)
# Load the model and key components
with open('model_and_key_components.pkl', 'rb') as file:
loaded_components = pickle.load(file)
loaded_model = loaded_components['model']
loaded_scaler = loaded_components['scaler']
# Data Fields
data_fields = {
"**PRG**": "**Number of Pregnancies (applicable only to females)**\n - The total number of pregnancies a female patient has experienced.",
"**PL**": "**Plasma Glucose Concentration (mg/dL)**\n - The concentration of glucose in the patient's blood). It provides insights into the patient's blood sugar levels.",
"**PR**": "**Diastolic Blood Pressure (mm Hg)**\n - The diastolic blood pressure, representing the pressure in the arteries when the heart is at rest between beats.",
"**SK**": "**Triceps Skinfold Thickness (mm)**\n - The thickness of the skinfold on the triceps, measured in millimeters (mm). This measurement is often used to assess body fat percentage.",
"**TS**": "**2-hour Serum Insulin (mu U/ml)**\n - The level of insulin in the patient's blood two hours after a meal, measured in micro international units per milliliter (mu U/ml).",
"**M11**": "**Body Mass Index (BMI) (weight in kg / {(height in m)}^2)**\n - BMI provides a standardized measure that helps assess the degree of body fat and categorizes individuals into different weight status categories, such as underweight, normal weight, overweight, and obesity.",
"**BD2**": "**Diabetes pedigree function (mu U/ml)**\n - The function provides information about the patient's family history of diabetes.",
"**Age**": "**Age of the Patient (years)**\n - Age is an essential factor in medical assessments and can influence various health outcomes."
}
# Organize input fields into two columns
col1, col2 = st.columns(2)
# Initialize input_data dictionary
input_data = {}
# Function to preprocess input data
def preprocess_input_data(input_data):
numerical_cols = ['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age']
input_data_scaled = loaded_scaler.transform([list(input_data.values())])
return pd.DataFrame(input_data_scaled, columns=numerical_cols)
# Function to make predictions
def make_predictions(input_data_scaled_df):
y_pred = loaded_model.predict(input_data_scaled_df)
sepsis_mapping = {0: 'Negative', 1: 'Positive'}
return sepsis_mapping[y_pred[0]]
# Input Data Fields in two columns
with col1:
input_data["PRG"] = st.slider("PRG: Number of Pregnancies", 0, 20, 0)
input_data["PL"] = st.number_input("PL: Plasma Glucose Concentration (mg/dL)", value=0.0)
input_data["PR"] = st.number_input("PR: Diastolic Blood Pressure (mm Hg)", value=0.0)
input_data["SK"] = st.number_input("SK: Triceps Skinfold Thickness (mm)", value=0.0)
with col2:
input_data["TS"] = st.number_input("TS: 2-Hour Serum Insulin (mu U/ml)", value=0.0)
input_data["M11"] = st.number_input("M11: Body Mass Index (BMI)", value=0.0)
input_data["BD2"] = st.number_input("BD2: Diabetes Pedigree Function (mu U/ml)", value=0.0)
input_data["Age"] = st.slider("Age: Age of the patient (years)", 0, 100, 0)
# Predict Button with Style
if st.button("๐ฎ Predict Sepsis"):
try:
input_data_scaled_df = preprocess_input_data(input_data)
sepsis_status = make_predictions(input_data_scaled_df)
# Display the sepsis prediction and risk
if sepsis_status == 'Negative':
st.success(f"The patient is at **low risk** of developing sepsis. The predicted sepsis status is: **{sepsis_status}**")
elif sepsis_status == 'Positive':
st.error(f"**The patient is at **high risk** of developing sepsis. The predicted sepsis status is: **{sepsis_status}**")
# Add the sepsis prediction to the input DataFrame
input_data['Sepsis'] = sepsis_status
# Convert the input data to a pandas DataFrame
input_df = pd.DataFrame([input_data])
# Display the input DataFrame
st.markdown(
f"""
<div style="text-align: center; font-size: 18px; font-weight: bold;">
<p>Input Data with Sepsis Prediction</p>
</div>
""",
unsafe_allow_html=True
)
st.table(input_df)
except Exception as e:
st.error(f"An error occurred: {e}")
# Display Data Fields and Descriptions
st.sidebar.title("๐ Data Fields")
for field, description in data_fields.items():
st.sidebar.markdown(f"{field}: {description}")
# Copyright statement at the bottom
st.markdown(
"""
<div style="text-align:center">
Developed by <a href="https://www.linkedin.com/in/rasmo-/" style="font-style:italic">Rasmo Wanyama</a>.
</div>
""",
unsafe_allow_html=True
)
st.stop()
|