|
import pandas as pd |
|
import streamlit as st |
|
import numpy as np |
|
import pickle |
|
import catboost |
|
from sklearn.impute import SimpleImputer |
|
|
|
|
|
|
|
|
|
with open("model_and_key_components.pkl", "rb") as f: |
|
components = pickle.load(f) |
|
|
|
|
|
dt_model = components["model"] |
|
unique_values = components["unique_values"] |
|
|
|
|
|
st.image("https://pbs.twimg.com/media/DywhyJiXgAIUZej?format=jpg&name=medium") |
|
st.title("Income Prediction App") |
|
|
|
|
|
st.sidebar.header("Description of the Required Input Fields") |
|
st.sidebar.markdown("**Age**: Enter the age of the individual (e.g., 25, 42, 57).") |
|
st.sidebar.markdown("**Gender**: Select the gender of the individual (e.g., Male, Female).") |
|
st.sidebar.markdown("**Education**: Choose the highest education level of the individual (e.g., Bachelors Degree, High School Graduate, Masters Degree).") |
|
st.sidebar.markdown("**Worker Class**: Select the class of worker for the individual (e.g., Private, Government, Self-employed).") |
|
st.sidebar.markdown("**Marital Status**: Choose the marital status of the individual (e.g., Married, Never married, Divorced).") |
|
st.sidebar.markdown("**Race**: Select the race of the individual (e.g., White, Black, Asian-Pac-Islander).") |
|
st.sidebar.markdown("**Hispanic Origin**: Choose the Hispanic origin of the individual (e.g., Mexican, Puerto Rican, Cuban).") |
|
st.sidebar.markdown("**Full/Part-Time Employment**: Select the employment status as full-time or part-time (e.g., Full-time schedules, Part-time schedules).") |
|
st.sidebar.markdown("**Wage Per Hour**: Enter the wage per hour of the individual (numeric value, e.g., 20.50).") |
|
st.sidebar.markdown("**Weeks Worked Per Year**: Specify the number of weeks the individual worked in a year (numeric value, e.g., 45).") |
|
st.sidebar.markdown("**Industry Code**: Choose the category code of the industry where the individual works (e.g., Category 1, Category 2).") |
|
st.sidebar.markdown("**Major Industry Code**: Select the major industry code of the individual's work (e.g., Industry A, Industry B).") |
|
st.sidebar.markdown("**Occupation Code**: Choose the category code of the occupation of the individual (e.g., Category X, Category Y).") |
|
st.sidebar.markdown("**Major Occupation Code**: Select the major occupation code of the individual (e.g., Occupation 1, Occupation 2).") |
|
st.sidebar.markdown("**Total Employed**: Specify the number of persons worked for the employer (numeric value, e.g., 3, 5).") |
|
st.sidebar.markdown("**Household Stat**: Choose the detailed household and family status of the individual (e.g., Single, Married-civilian spouse present).") |
|
st.sidebar.markdown("**Household Summary**: Select the detailed household summary (e.g., Child under 18 never married, Spouse of householder).") |
|
st.sidebar.markdown("**Veteran Benefits**: Choose whether the individual receives veteran benefits (Yes or No).") |
|
st.sidebar.markdown("**Tax Filer Status**: Select the tax filer status of the individual (e.g., Single, Joint both 65+).") |
|
st.sidebar.markdown("**Gains**: Specify any gains the individual has (numeric value, e.g., 1500.0).") |
|
st.sidebar.markdown("**Losses**: Specify any losses the individual has (numeric value, e.g., 300.0).") |
|
st.sidebar.markdown("**Dividends from Stocks**: Specify any dividends from stocks for the individual (numeric value, e.g., 120.5).") |
|
st.sidebar.markdown("**Citizenship**: Select the citizenship status of the individual (e.g., Native, Foreign Born- Not a citizen of U S).") |
|
st.sidebar.markdown("**Year of Migration**: Enter the year of migration for the individual (numeric value, e.g., 2005).") |
|
st.sidebar.markdown("**Country of Birth**: Choose the individual's birth country (e.g., United-States, Other).") |
|
st.sidebar.markdown("**Importance of Record**: Enter the weight of the instance (numeric value, e.g., 0.9).") |
|
|
|
|
|
input_data = { |
|
'age': 0, |
|
'gender': unique_values['gender'][0], |
|
'education': unique_values['education'][0], |
|
'worker_class': unique_values['worker_class'][0], |
|
'marital_status': unique_values['marital_status'][0], |
|
'race': unique_values['race'][0], |
|
'is_hispanic': unique_values['is_hispanic'][0], |
|
'employment_commitment': unique_values['employment_commitment'][0], |
|
'employment_stat': unique_values['employment_stat'][0], |
|
'wage_per_hour': 0, |
|
'working_week_per_year': 0, |
|
'industry_code': 0, |
|
'industry_code_main': unique_values['industry_code_main'][0], |
|
'occupation_code': 0, |
|
'occupation_code_main': unique_values['occupation_code_main'][0], |
|
'total_employed': 0, |
|
'household_stat': unique_values['household_stat'][0], |
|
'household_summary': unique_values['household_summary'][0], |
|
'vet_benefit': 0, |
|
'tax_status': unique_values['tax_status'][0], |
|
'gains': 0, |
|
'losses': 0, |
|
'stocks_status': 0, |
|
'citizenship': unique_values['citizenship'][0], |
|
'mig_year': 0, |
|
'country_of_birth_own': 'United-States', |
|
'importance_of_record': 0.0 |
|
} |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
|
|
with col1: |
|
input_data['age'] = st.number_input("Age", min_value=0, key='age') |
|
input_data['gender'] = st.selectbox("Gender", unique_values['gender'], key='gender') |
|
input_data['education'] = st.selectbox("Education", unique_values['education'], key='education') |
|
input_data['worker_class'] = st.selectbox("Class of Worker", unique_values['worker_class'], key='worker_class') |
|
input_data['marital_status'] = st.selectbox("Marital Status", unique_values['marital_status'], key='marital_status') |
|
input_data['race'] = st.selectbox("Race", unique_values['race'], key='race') |
|
input_data['is_hispanic'] = st.selectbox("Hispanic Origin", unique_values['is_hispanic'], key='is_hispanic') |
|
input_data['employment_commitment'] = st.selectbox("Full/Part-Time Employment", unique_values['employment_commitment'], key='employment_commitment') |
|
input_data['employment_stat'] = st.selectbox("Has Own Business Or Is Self Employed", unique_values['employment_stat'], key='employment_stat') |
|
input_data['wage_per_hour'] = st.number_input("Wage Per Hour", min_value=0, key='wage_per_hour') |
|
|
|
with col2: |
|
input_data['working_week_per_year'] = st.number_input("Weeks Worked Per Year", min_value=0, key='working_week_per_year') |
|
input_data['industry_code'] = st.selectbox("Category Code of Industry", unique_values['industry_code'], key='industry_code') |
|
input_data['industry_code_main'] = st.selectbox("Major Industry Code", unique_values['industry_code_main'], key='industry_code_main') |
|
input_data['occupation_code'] = st.selectbox("Category Code of Occupation", unique_values['occupation_code'], key='occupation_code') |
|
input_data['occupation_code_main'] = st.selectbox("Major Occupation Code", unique_values['occupation_code_main'], key='occupation_code_main') |
|
input_data['total_employed'] = st.number_input("Number of Persons Worked for Employer", min_value=0, key='total_employed') |
|
input_data['household_stat'] = st.selectbox("Detailed Household and Family Status", unique_values['household_stat'], key='household_stat') |
|
input_data['household_summary'] = st.selectbox("Detailed Household Summary", unique_values['household_summary'], key='household_summary') |
|
input_data['vet_benefit'] = st.selectbox("Veteran Benefits", unique_values['vet_benefit'], key='vet_benefit') |
|
|
|
with col3: |
|
input_data['tax_status'] = st.selectbox("Tax Filer Status", unique_values['tax_status'], key='tax_status') |
|
input_data['gains'] = st.number_input("Gains", min_value=0, key='gains') |
|
input_data['losses'] = st.number_input("Losses", min_value=0, key='losses') |
|
input_data['stocks_status'] = st.number_input("Dividends from Stocks", min_value=0, key='stocks_status') |
|
input_data['citizenship'] = st.selectbox("Citizenship", unique_values['citizenship'], key='citizenship') |
|
input_data['mig_year'] = st.selectbox("Migration Year", unique_values['mig_year'], key='migration_year') |
|
input_data['country_of_birth_own'] = st.selectbox("Country of Birth", unique_values['country_of_birth_own'], key='country_of_birth_own') |
|
input_data['importance_of_record'] = st.number_input("Importance of Record", min_value=0, key='importance_of_record') |
|
|
|
|
|
if st.button("Predict"): |
|
|
|
input_df = pd.DataFrame([input_data]) |
|
|
|
|
|
prediction = dt_model.predict(input_df) |
|
prediction_proba = dt_model.predict_proba(input_df) |
|
|
|
|
|
st.subheader("Prediction") |
|
if prediction[0] == 1: |
|
st.success("This individual is predicted to have an income of over $50K.") |
|
else: |
|
st.error("This individual is predicted to have an income of under $50K") |
|
|
|
|
|
st.subheader("Prediction Probability") |
|
st.write(f"The probability of the individual having an income over $50K is: {prediction_proba[0][1]:.2f}") |