rashid01 commited on
Commit
5d072bb
·
verified ·
1 Parent(s): 39890f8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -16
app.py CHANGED
@@ -4,7 +4,7 @@ from joblib import load
4
 
5
  # Load the trained model and scaler
6
  model = load('loandefaulter.joblib')
7
-
8
 
9
  # Define numerical features for scaling
10
  num_features = [
@@ -12,19 +12,30 @@ num_features = [
12
  ]
13
 
14
  # Create the Streamlit app
15
- st.title('Loan Default Prediction')
16
- st.write('Enter the loan details to get a prediction.')
17
-
18
- # Input fields for user data
19
- loan_amnt = st.number_input('Loan Amount', min_value=0.0)
20
- int_rate = st.number_input('Interest Rate', min_value=0.0)
21
- installment = st.number_input('Installment', min_value=0.0)
22
- annual_inc = st.number_input('Annual Income', min_value=0.0)
23
- dti = st.number_input('Debt-to-Income Ratio', min_value=0.0)
24
- revol_bal = st.number_input('Revolving Balance', min_value=0.0)
25
- revol_util = st.number_input('Revolving Utilization', min_value=0.0)
26
- total_acc = st.number_input('Total Accounts', min_value=0)
27
- mort_acc = st.number_input('Mortgage Accounts', min_value=0)
 
 
 
 
 
 
 
 
 
 
 
28
  loan_amnt_by_income = loan_amnt / (annual_inc + 1)
29
 
30
  # Create a DataFrame for the input
@@ -41,9 +52,14 @@ input_data = pd.DataFrame({
41
  'loan_amnt_by_income': [loan_amnt_by_income]
42
  })
43
 
44
-
 
45
 
46
  # Predict using the model
47
  if st.button('Predict'):
48
  prediction = model.predict(input_data)
49
- st.write(f'Prediction: {"Charged Off" if prediction[0] == 1 else "Not Charged Off"}')
 
 
 
 
 
4
 
5
  # Load the trained model and scaler
6
  model = load('loandefaulter.joblib')
7
+ scaler = load('scaler.joblib')
8
 
9
  # Define numerical features for scaling
10
  num_features = [
 
12
  ]
13
 
14
  # Create the Streamlit app
15
+ st.set_page_config(page_title='Loan Default Prediction', layout='wide')
16
+
17
+ # App title and description
18
+ st.markdown("""
19
+ <style>
20
+ .title { font-size: 36px; font-weight: bold; color: #2E86C1; }
21
+ .description { font-size: 20px; color: #34495E; }
22
+ .input-container { margin-top: 20px; }
23
+ .slider-container { margin: 10px 0; }
24
+ </style>
25
+ <div class="title">Loan Default Prediction</div>
26
+ <div class="description">Enter the loan details below to get a prediction on whether the loan will be defaulted.</div>
27
+ """, unsafe_allow_html=True)
28
+
29
+ # Input fields with sliders
30
+ loan_amnt = st.slider('Loan Amount', min_value=0.0, max_value=1000000.0, step=1000.0, value=10000.0)
31
+ int_rate = st.slider('Interest Rate (%)', min_value=0.0, max_value=30.0, step=0.1, value=5.0)
32
+ installment = st.slider('Installment', min_value=0.0, max_value=10000.0, step=10.0, value=200.0)
33
+ annual_inc = st.slider('Annual Income', min_value=0.0, max_value=1000000.0, step=1000.0, value=50000.0)
34
+ dti = st.slider('Debt-to-Income Ratio', min_value=0.0, max_value=100.0, step=0.1, value=15.0)
35
+ revol_bal = st.slider('Revolving Balance', min_value=0.0, max_value=500000.0, step=100.0, value=10000.0)
36
+ revol_util = st.slider('Revolving Utilization (%)', min_value=0.0, max_value=100.0, step=0.1, value=30.0)
37
+ total_acc = st.slider('Total Accounts', min_value=0, max_value=100, step=1, value=10)
38
+ mort_acc = st.slider('Mortgage Accounts', min_value=0, max_value=10, step=1, value=1)
39
  loan_amnt_by_income = loan_amnt / (annual_inc + 1)
40
 
41
  # Create a DataFrame for the input
 
52
  'loan_amnt_by_income': [loan_amnt_by_income]
53
  })
54
 
55
+ # Scale the input data
56
+ input_data[num_features] = scaler.transform(input_data[num_features])
57
 
58
  # Predict using the model
59
  if st.button('Predict'):
60
  prediction = model.predict(input_data)
61
+ result = "Defaulted" if prediction[0] == 1 else "Not Defaulted"
62
+ color = "red" if prediction[0] == 1 else "green"
63
+ st.markdown(f"""
64
+ <div style="font-size: 24px; color: {color}; font-weight: bold;">Prediction: {result}</div>
65
+ """, unsafe_allow_html=True)