Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.preprocessing import StandardScaler
|
5 |
+
|
6 |
+
# Load the trained model
|
7 |
+
with open('loandefaulter.pkl', 'rb') as file:
|
8 |
+
model = pickle.load(file)
|
9 |
+
|
10 |
+
# Initialize the scaler
|
11 |
+
scaler = StandardScaler()
|
12 |
+
|
13 |
+
# Define numerical features for scaling
|
14 |
+
num_features = [
|
15 |
+
'loan_amnt', 'int_rate', 'installment', 'annual_inc', 'dti', 'revol_bal', 'revol_util', 'total_acc', 'mort_acc', 'loan_amnt_by_income'
|
16 |
+
]
|
17 |
+
|
18 |
+
# Create the Streamlit app
|
19 |
+
st.title('Loan Default Prediction')
|
20 |
+
st.write('Enter the loan details to get a prediction.')
|
21 |
+
|
22 |
+
# Input fields for user data
|
23 |
+
loan_amnt = st.number_input('Loan Amount', min_value=0.0)
|
24 |
+
int_rate = st.number_input('Interest Rate', min_value=0.0)
|
25 |
+
installment = st.number_input('Installment', min_value=0.0)
|
26 |
+
annual_inc = st.number_input('Annual Income', min_value=0.0)
|
27 |
+
dti = st.number_input('Debt-to-Income Ratio', min_value=0.0)
|
28 |
+
revol_bal = st.number_input('Revolving Balance', min_value=0.0)
|
29 |
+
revol_util = st.number_input('Revolving Utilization', min_value=0.0)
|
30 |
+
total_acc = st.number_input('Total Accounts', min_value=0)
|
31 |
+
mort_acc = st.number_input('Mortgage Accounts', min_value=0)
|
32 |
+
loan_amnt_by_income = loan_amnt / (annual_inc + 1)
|
33 |
+
|
34 |
+
# Create a DataFrame for the input
|
35 |
+
input_data = pd.DataFrame({
|
36 |
+
'loan_amnt': [loan_amnt],
|
37 |
+
'int_rate': [int_rate],
|
38 |
+
'installment': [installment],
|
39 |
+
'annual_inc': [annual_inc],
|
40 |
+
'dti': [dti],
|
41 |
+
'revol_bal': [revol_bal],
|
42 |
+
'revol_util': [revol_util],
|
43 |
+
'total_acc': [total_acc],
|
44 |
+
'mort_acc': [mort_acc],
|
45 |
+
'loan_amnt_by_income': [loan_amnt_by_income]
|
46 |
+
})
|
47 |
+
|
48 |
+
# Scale the input data
|
49 |
+
input_data[num_features] = scaler.fit_transform(input_data[num_features])
|
50 |
+
|
51 |
+
# Predict using the model
|
52 |
+
if st.button('Predict'):
|
53 |
+
prediction = model.predict(input_data)
|
54 |
+
st.write(f'Prediction: {"Charged Off" if prediction[0] == 1 else "Not Charged Off"}')
|