rashid01 commited on
Commit
244bdb0
·
verified ·
1 Parent(s): 213acd5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -14
app.py CHANGED
@@ -7,9 +7,7 @@ model = load('loandefaulter.joblib')
7
  scaler = load('scaler.joblib')
8
 
9
  # Define numerical features for scaling
10
- num_features = [
11
- 'loan_amnt', 'int_rate', 'installment', 'annual_inc', 'dti', 'revol_bal', 'revol_util', 'total_acc', 'mort_acc'
12
- ]
13
 
14
  # Create the Streamlit app
15
  st.set_page_config(page_title='Loan Default Prediction', layout='wide')
@@ -29,13 +27,9 @@ st.markdown("""
29
  # Input fields with sliders
30
  loan_amnt = st.slider('Loan Amount', min_value=0.0, max_value=1000000.0, step=1000.0, value=10000.0)
31
  int_rate = st.slider('Interest Rate (%)', min_value=0.0, max_value=30.0, step=0.1, value=5.0)
32
- installment = st.slider('Installment', min_value=0.0, max_value=10000.0, step=10.0, value=200.0)
33
  annual_inc = st.slider('Annual Income', min_value=0.0, max_value=1000000.0, step=1000.0, value=50000.0)
34
- dti = st.slider('Debt-to-Income Ratio', min_value=0.0, max_value=100.0, step=0.1, value=15.0)
35
- revol_bal = st.slider('Revolving Balance', min_value=0.0, max_value=500000.0, step=100.0, value=10000.0)
36
- revol_util = st.slider('Revolving Utilization (%)', min_value=0.0, max_value=100.0, step=0.1, value=30.0)
37
- total_acc = st.slider('Total Accounts', min_value=0, max_value=100, step=1, value=10)
38
- mort_acc = st.slider('Mortgage Accounts', min_value=0, max_value=10, step=1, value=1)
39
  loan_amnt_by_income = loan_amnt / (annual_inc + 1)
40
 
41
  # Create a DataFrame for the input
@@ -44,11 +38,7 @@ input_data = pd.DataFrame({
44
  'int_rate': [int_rate],
45
  'installment': [installment],
46
  'annual_inc': [annual_inc],
47
- 'dti': [dti],
48
- 'revol_bal': [revol_bal],
49
- 'revol_util': [revol_util],
50
- 'total_acc': [total_acc],
51
- 'mort_acc': [mort_acc]
52
  })
53
 
54
  # Scale the numerical features that were used to fit the scaler
@@ -65,3 +55,4 @@ if st.button('Predict'):
65
  st.markdown(f"""
66
  <div style="font-size: 24px; color: {color}; font-weight: bold;">Prediction: {result}</div>
67
  """, unsafe_allow_html=True)
 
 
7
  scaler = load('scaler.joblib')
8
 
9
  # Define numerical features for scaling
10
+ num_features = ['loan_amnt', 'int_rate', 'installment', 'annual_inc', 'cibil_score']
 
 
11
 
12
  # Create the Streamlit app
13
  st.set_page_config(page_title='Loan Default Prediction', layout='wide')
 
27
  # Input fields with sliders
28
  loan_amnt = st.slider('Loan Amount', min_value=0.0, max_value=1000000.0, step=1000.0, value=10000.0)
29
  int_rate = st.slider('Interest Rate (%)', min_value=0.0, max_value=30.0, step=0.1, value=5.0)
30
+ installment = st.slider('EMI Amount', min_value=0.0, max_value=10000.0, step=10.0, value=200.0)
31
  annual_inc = st.slider('Annual Income', min_value=0.0, max_value=1000000.0, step=1000.0, value=50000.0)
32
+ cibil_score = st.number_input('CIBIL Score', min_value=300, max_value=900, step=1, value=700)
 
 
 
 
33
  loan_amnt_by_income = loan_amnt / (annual_inc + 1)
34
 
35
  # Create a DataFrame for the input
 
38
  'int_rate': [int_rate],
39
  'installment': [installment],
40
  'annual_inc': [annual_inc],
41
+ 'cibil_score': [cibil_score]
 
 
 
 
42
  })
43
 
44
  # Scale the numerical features that were used to fit the scaler
 
55
  st.markdown(f"""
56
  <div style="font-size: 24px; color: {color}; font-weight: bold;">Prediction: {result}</div>
57
  """, unsafe_allow_html=True)
58
+