File size: 146,476 Bytes
8ba1a89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "d602e75d",
   "metadata": {},
   "source": [
    "# 0. Import Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "2d97e5ec",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\cpras\\anaconda3\\envs\\AItrainer\\lib\\site-packages\\numpy\\_distributor_init.py:30: UserWarning: loaded more than 1 DLL from .libs:\n",
      "c:\\Users\\cpras\\anaconda3\\envs\\AItrainer\\lib\\site-packages\\numpy\\.libs\\libopenblas.FB5AE2TYXYH2IJRDKGDGQ3XBKLKTF43H.gfortran-win_amd64.dll\n",
      "c:\\Users\\cpras\\anaconda3\\envs\\AItrainer\\lib\\site-packages\\numpy\\.libs\\libopenblas.WCDJNK7YVMPZQ2ME2ZZHJJRJ3JIKNDB7.gfortran-win_amd64.dll\n",
      "  warnings.warn(\"loaded more than 1 DLL from .libs:\"\n"
     ]
    }
   ],
   "source": [
    "import cv2\n",
    "import numpy as np\n",
    "import os\n",
    "from matplotlib import pyplot as plt\n",
    "import time\n",
    "import mediapipe as mp\n",
    "import tensorflow as tf\n",
    "import math\n",
    "\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.metrics import multilabel_confusion_matrix, accuracy_score, classification_report\n",
    "from tensorflow.keras.utils import to_categorical\n",
    "\n",
    "import tensorflow as tf\n",
    "from tensorflow.keras import backend as K\n",
    "from tensorflow.keras.callbacks import TensorBoard, EarlyStopping, ReduceLROnPlateau, ModelCheckpoint\n",
    "\n",
    "from tensorflow.keras.models import Sequential, Model\n",
    "\n",
    "from tensorflow.keras.layers import (LSTM, Dense, Concatenate, Attention, Dropout, Softmax,\n",
    "                                     Input, Flatten, Activation, Bidirectional, Permute, multiply, \n",
    "                                     ConvLSTM2D, MaxPooling3D, TimeDistributed, Conv2D, MaxPooling2D)\n",
    "\n",
    "from scipy import stats\n",
    "\n",
    "# disable some of the tf/keras training warnings \n",
    "os.environ['TF_CPP_MIN_LOG_LEVEL'] = \"3\"\n",
    "tf.get_logger().setLevel(\"ERROR\")\n",
    "tf.autograph.set_verbosity(1)\n",
    "\n",
    "# suppress untraced functions warning\n",
    "import absl.logging\n",
    "absl.logging.set_verbosity(absl.logging.ERROR)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "55f470e2",
   "metadata": {},
   "source": [
    "# 1. Keypoints using MP Pose"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "20cde117",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Pre-trained pose estimation model from Google Mediapipe\n",
    "mp_pose = mp.solutions.pose\n",
    "\n",
    "# Supported Mediapipe visualization tools\n",
    "mp_drawing = mp.solutions.drawing_utils"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "716e9f8e",
   "metadata": {},
   "outputs": [],
   "source": [
    "def mediapipe_detection(image, model):\n",
    "    \"\"\"\n",
    "    This function detects human pose estimation keypoints from webcam footage\n",
    "    \n",
    "    \"\"\"\n",
    "    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # COLOR CONVERSION BGR 2 RGB\n",
    "    image.flags.writeable = False                  # Image is no longer writeable\n",
    "    results = model.process(image)                 # Make prediction\n",
    "    image.flags.writeable = True                   # Image is now writeable \n",
    "    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # COLOR COVERSION RGB 2 BGR\n",
    "    return image, results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "9bd7ba58",
   "metadata": {},
   "outputs": [],
   "source": [
    "def draw_landmarks(image, results):\n",
    "    \"\"\"\n",
    "    This function draws keypoints and landmarks detected by the human pose estimation model\n",
    "    \n",
    "    \"\"\"\n",
    "    mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,\n",
    "                                mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2), \n",
    "                                mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2) \n",
    "                                 )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "c0ebe952",
   "metadata": {},
   "outputs": [],
   "source": [
    "cap = cv2.VideoCapture(0) # camera object\n",
    "HEIGHT = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # webcam video frame height\n",
    "WIDTH = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # webcam video frame width\n",
    "FPS = int(cap.get(cv2.CAP_PROP_FPS)) # webcam video fram rate \n",
    "\n",
    "# Set and test mediapipe model using webcam\n",
    "with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:\n",
    "    while cap.isOpened():\n",
    "\n",
    "        # Read feed\n",
    "        ret, frame = cap.read()\n",
    "      \n",
    "        # Make detection\n",
    "        image, results = mediapipe_detection(frame, pose)\n",
    "        \n",
    "        # Extract landmarks\n",
    "        try:\n",
    "            landmarks = results.pose_landmarks.landmark\n",
    "        except:\n",
    "            pass\n",
    "        \n",
    "        # Render detections\n",
    "        draw_landmarks(image, results)               \n",
    "        \n",
    "        # Display frame on screen\n",
    "        cv2.imshow('OpenCV Feed', image)\n",
    "        \n",
    "        # Exit / break out logic\n",
    "        if cv2.waitKey(10) & 0xFF == ord('q'):\n",
    "            break\n",
    "\n",
    "    cap.release()\n",
    "    cv2.destroyAllWindows()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f9fb32f3",
   "metadata": {},
   "source": [
    "# 2. Extract Keypoints"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "a81823f6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Recollect and organize keypoints from the test\n",
    "pose = []\n",
    "for res in results.pose_landmarks.landmark:\n",
    "    test = np.array([res.x, res.y, res.z, res.visibility])\n",
    "    pose.append(test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "cd92eee3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 33 landmarks with 4 values (x, y, z, visibility)\n",
    "num_landmarks = len(landmarks)\n",
    "num_values = len(test)\n",
    "num_input_values = num_landmarks*num_values"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "9dad5b8c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# This is an example of what we would use as an input into our AI models\n",
    "pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "6f4d1079",
   "metadata": {},
   "outputs": [],
   "source": [
    "def extract_keypoints(results):\n",
    "    \"\"\"\n",
    "    Processes and organizes the keypoints detected from the pose estimation model \n",
    "    to be used as inputs for the exercise decoder models\n",
    "    \n",
    "    \"\"\"\n",
    "    pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)\n",
    "    return pose"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "03b907e8",
   "metadata": {},
   "source": [
    "# 3. Setup Folders for Collection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "ddcaecfd",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "c:\\Users\\cpras\\Documents\\GitHub\\AI_Personal_Trainer\\data\n"
     ]
    }
   ],
   "source": [
    "# Path for exported data, numpy arrays\n",
    "DATA_PATH = os.path.join(os. getcwd(),'data') \n",
    "print(DATA_PATH)\n",
    "\n",
    "# make directory if it does not exist yet\n",
    "if not os.path.exists(DATA_PATH):\n",
    "    os.makedirs(DATA_PATH)\n",
    "\n",
    "# Actions/exercises that we try to detect\n",
    "actions = np.array(['curl', 'press', 'squat'])\n",
    "num_classes = len(actions)\n",
    "\n",
    "# How many videos worth of data\n",
    "no_sequences = 50\n",
    "\n",
    "# Videos are going to be this many frames in length\n",
    "sequence_length = FPS*1\n",
    "\n",
    "# Folder start\n",
    "# Change this to collect more data and not lose previously collected data\n",
    "start_folder = 101"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "id": "fed6b275",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Build folder paths\n",
    "for action in actions:     \n",
    "    for sequence in range(start_folder,no_sequences+start_folder):\n",
    "        try: \n",
    "            os.makedirs(os.path.join(DATA_PATH, action, str(sequence)))  \n",
    "        except:\n",
    "            pass"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7622b573",
   "metadata": {},
   "source": [
    "# 4. Collect Keypoint Values for Training and Testing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "d224561f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Colors associated with each exercise (e.g., curls are denoted by blue, squats are denoted by orange, etc.)\n",
    "colors = [(245,117,16), (117,245,16), (16,117,245)]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "id": "41b81490",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Collect Training Data\n",
    "\n",
    "cap = cv2.VideoCapture(0)\n",
    "# Set mediapipe model \n",
    "with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:\n",
    "    # Loop through actions\n",
    "    for idx, action in enumerate(actions):\n",
    "        # Loop through sequences (i.e., videos)\n",
    "        for sequence in range(start_folder, start_folder+no_sequences):\n",
    "            # Loop through video length (i.e, sequence length)\n",
    "            for frame_num in range(sequence_length):\n",
    "                # Read feed\n",
    "                ret, frame = cap.read()\n",
    "                \n",
    "                # Make detection\n",
    "                image, results = mediapipe_detection(frame, pose)\n",
    "\n",
    "                # Extract landmarks\n",
    "                try:\n",
    "                    landmarks = results.pose_landmarks.landmark\n",
    "                except:\n",
    "                    pass\n",
    "                \n",
    "                # Render detections\n",
    "                draw_landmarks(image, results) \n",
    "\n",
    "                # Apply visualization logic\n",
    "                if frame_num == 0: # If first frame in sequence, print that you're starting a new data collection and wait 500 ms\n",
    "                    cv2.putText(image, 'STARTING COLLECTION', (120,200), \n",
    "                            cv2.FONT_HERSHEY_SIMPLEX, 1, (0,255, 0), 4, cv2.LINE_AA)\n",
    "                    \n",
    "                    cv2.putText(image, 'Collecting {} Video # {}'.format(action, sequence), (15,30), \n",
    "                            cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 8, cv2.LINE_AA)\n",
    "                    cv2.putText(image, 'Collecting {} Video # {}'.format(action, sequence), (15,30), \n",
    "                            cv2.FONT_HERSHEY_SIMPLEX, 1, colors[idx], 4, cv2.LINE_AA)\n",
    "                    \n",
    "                    # Show to screen\n",
    "                    cv2.imshow('OpenCV Feed', image)\n",
    "                    cv2.waitKey(500)\n",
    "                else: \n",
    "                    cv2.putText(image, 'Collecting {} Video # {}'.format(action, sequence), (15,30), \n",
    "                            cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 8, cv2.LINE_AA)\n",
    "                    cv2.putText(image, 'Collecting {} Video # {}'.format(action, sequence), (15,30), \n",
    "                            cv2.FONT_HERSHEY_SIMPLEX, 1, colors[idx], 4, cv2.LINE_AA)\n",
    "                    \n",
    "                    # Show to screen\n",
    "                    cv2.imshow('OpenCV Feed', image)\n",
    "\n",
    "                # Export keypoints (sequence + pose landmarks)\n",
    "                keypoints = extract_keypoints(results)\n",
    "                npy_path = os.path.join(DATA_PATH, action, str(sequence), str(frame_num))\n",
    "                np.save(npy_path, keypoints)\n",
    "\n",
    "                # Break gracefully\n",
    "                if cv2.waitKey(10) & 0xFF == ord('q'):\n",
    "                    break\n",
    "                    \n",
    "    cap.release()\n",
    "    cv2.destroyAllWindows()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "4b016129",
   "metadata": {},
   "outputs": [],
   "source": [
    "cap.release()\n",
    "cv2.destroyAllWindows()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d01ec993",
   "metadata": {},
   "source": [
    "# 5. Preprocess Data and Create Labels/Features"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "cad528c8",
   "metadata": {},
   "outputs": [],
   "source": [
    "label_map = {label:num for num, label in enumerate(actions)}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "a0add3fb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load and organize recorded training data\n",
    "sequences, labels = [], []\n",
    "for action in actions:\n",
    "    for sequence in np.array(os.listdir(os.path.join(DATA_PATH, action))).astype(int):\n",
    "        window = []\n",
    "        for frame_num in range(sequence_length):         \n",
    "            # LSTM input data\n",
    "            res = np.load(os.path.join(DATA_PATH, action, str(sequence), \"{}.npy\".format(frame_num)))\n",
    "            window.append(res)  \n",
    "            \n",
    "        sequences.append(window)\n",
    "        labels.append(label_map[action])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "ab459ce4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(450, 30, 132) (450, 3)\n"
     ]
    }
   ],
   "source": [
    "# Make sure first dimensions of arrays match\n",
    "X = np.array(sequences)\n",
    "y = to_categorical(labels).astype(int)\n",
    "print(X.shape, y.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "5ac49993",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(405, 30, 132) (405, 3)\n"
     ]
    }
   ],
   "source": [
    "# Split into training, validation, and testing datasets\n",
    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.10, random_state=1)\n",
    "print(X_train.shape, y_train.shape)\n",
    "X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=15/90, random_state=2)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e53ae03d",
   "metadata": {},
   "source": [
    "# 6. Build and Train Neural Networks"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "912f3153",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Callbacks to be used during neural network training \n",
    "es_callback = EarlyStopping(monitor='val_loss', min_delta=5e-4, patience=10, verbose=0, mode='min')\n",
    "lr_callback = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.00001, verbose=0, mode='min')\n",
    "chkpt_callback = ModelCheckpoint(filepath=DATA_PATH, monitor='val_loss', verbose=0, save_best_only=True, \n",
    "                                 save_weights_only=False, mode='min', save_freq=1)\n",
    "\n",
    "# Optimizer\n",
    "opt = tf.keras.optimizers.Adam(learning_rate=0.01)\n",
    "\n",
    "# some hyperparamters\n",
    "batch_size = 32\n",
    "max_epochs = 500"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c1ca0cad",
   "metadata": {},
   "source": [
    "## 6a. LSTM"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "730f987b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Set up Tensorboard logging and callbacks\n",
    "NAME = f\"ExerciseRecognition-LSTM-{int(time.time())}\"\n",
    "log_dir = os.path.join(os.getcwd(), 'logs', NAME,'')\n",
    "tb_callback = TensorBoard(log_dir=log_dir)\n",
    "\n",
    "callbacks = [tb_callback, es_callback, lr_callback, chkpt_callback]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "ae7595c1",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: \"sequential\"\n",
      "_________________________________________________________________\n",
      " Layer (type)                Output Shape              Param #   \n",
      "=================================================================\n",
      " lstm (LSTM)                 (None, 30, 128)           133632    \n",
      "                                                                 \n",
      " lstm_1 (LSTM)               (None, 30, 256)           394240    \n",
      "                                                                 \n",
      " lstm_2 (LSTM)               (None, 128)               197120    \n",
      "                                                                 \n",
      " dense (Dense)               (None, 128)               16512     \n",
      "                                                                 \n",
      " dense_1 (Dense)             (None, 64)                8256      \n",
      "                                                                 \n",
      " dense_2 (Dense)             (None, 3)                 195       \n",
      "                                                                 \n",
      "=================================================================\n",
      "Total params: 749,955\n",
      "Trainable params: 749,955\n",
      "Non-trainable params: 0\n",
      "_________________________________________________________________\n",
      "None\n"
     ]
    }
   ],
   "source": [
    "lstm = Sequential()\n",
    "lstm.add(LSTM(128, return_sequences=True, activation='relu', input_shape=(sequence_length, num_input_values)))\n",
    "lstm.add(LSTM(256, return_sequences=True, activation='relu'))\n",
    "lstm.add(LSTM(128, return_sequences=False, activation='relu'))\n",
    "lstm.add(Dense(128, activation='relu'))\n",
    "lstm.add(Dense(64, activation='relu'))\n",
    "lstm.add(Dense(actions.shape[0], activation='softmax'))\n",
    "print(lstm.summary())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "8a10e698",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/500\n",
      "11/11 [==============================] - 58s 5s/step - loss: 1.1959 - categorical_accuracy: 0.4718 - val_loss: 1.1662 - val_categorical_accuracy: 0.3529 - lr: 0.0010\n",
      "Epoch 2/500\n",
      "11/11 [==============================] - 54s 5s/step - loss: 0.9662 - categorical_accuracy: 0.3887 - val_loss: 0.7277 - val_categorical_accuracy: 0.5441 - lr: 0.0010\n",
      "Epoch 3/500\n",
      "11/11 [==============================] - 55s 5s/step - loss: 0.7514 - categorical_accuracy: 0.7092 - val_loss: 0.9325 - val_categorical_accuracy: 0.5882 - lr: 0.0010\n",
      "Epoch 4/500\n",
      "11/11 [==============================] - 54s 5s/step - loss: 0.8151 - categorical_accuracy: 0.7537 - val_loss: 4.7314 - val_categorical_accuracy: 0.4706 - lr: 0.0010\n",
      "Epoch 5/500\n",
      "11/11 [==============================] - 55s 5s/step - loss: 0.8428 - categorical_accuracy: 0.7567 - val_loss: 0.6531 - val_categorical_accuracy: 0.9706 - lr: 0.0010\n",
      "Epoch 6/500\n",
      "11/11 [==============================] - 55s 5s/step - loss: 0.6416 - categorical_accuracy: 0.8427 - val_loss: 0.7113 - val_categorical_accuracy: 0.6765 - lr: 0.0010\n",
      "Epoch 7/500\n",
      "11/11 [==============================] - 55s 5s/step - loss: 0.7782 - categorical_accuracy: 0.5964 - val_loss: 0.6241 - val_categorical_accuracy: 0.5882 - lr: 0.0010\n",
      "Epoch 8/500\n",
      "11/11 [==============================] - 62s 6s/step - loss: 0.4477 - categorical_accuracy: 0.8071 - val_loss: 0.3213 - val_categorical_accuracy: 0.9559 - lr: 0.0010\n",
      "Epoch 9/500\n",
      "11/11 [==============================] - 55s 5s/step - loss: 0.1791 - categorical_accuracy: 0.9733 - val_loss: 2.7620 - val_categorical_accuracy: 0.9412 - lr: 0.0010\n",
      "Epoch 10/500\n",
      "11/11 [==============================] - 55s 5s/step - loss: 1.7325 - categorical_accuracy: 0.6469 - val_loss: 0.8761 - val_categorical_accuracy: 0.8824 - lr: 0.0010\n",
      "Epoch 11/500\n",
      "11/11 [==============================] - 55s 5s/step - loss: 0.7803 - categorical_accuracy: 0.6558 - val_loss: 0.6232 - val_categorical_accuracy: 0.7647 - lr: 0.0010\n",
      "Epoch 12/500\n",
      "11/11 [==============================] - 55s 5s/step - loss: 0.5408 - categorical_accuracy: 0.8783 - val_loss: 0.2358 - val_categorical_accuracy: 0.8971 - lr: 0.0010\n",
      "Epoch 13/500\n",
      "11/11 [==============================] - 55s 5s/step - loss: 0.2337 - categorical_accuracy: 0.9496 - val_loss: 0.1032 - val_categorical_accuracy: 0.9853 - lr: 0.0010\n",
      "Epoch 14/500\n",
      "11/11 [==============================] - 55s 5s/step - loss: 1.0003 - categorical_accuracy: 0.7092 - val_loss: 1.2232 - val_categorical_accuracy: 0.2941 - lr: 0.0010\n",
      "Epoch 15/500\n",
      "11/11 [==============================] - 55s 5s/step - loss: 0.9862 - categorical_accuracy: 0.4896 - val_loss: 0.7796 - val_categorical_accuracy: 0.6029 - lr: 0.0010\n",
      "Epoch 16/500\n",
      "11/11 [==============================] - 56s 5s/step - loss: 0.7276 - categorical_accuracy: 0.6558 - val_loss: 0.6212 - val_categorical_accuracy: 0.6324 - lr: 0.0010\n",
      "Epoch 17/500\n",
      "11/11 [==============================] - 55s 5s/step - loss: 0.6449 - categorical_accuracy: 0.6588 - val_loss: 0.5822 - val_categorical_accuracy: 0.6176 - lr: 0.0010\n",
      "Epoch 18/500\n",
      "11/11 [==============================] - 56s 5s/step - loss: 0.5741 - categorical_accuracy: 0.6736 - val_loss: 0.5254 - val_categorical_accuracy: 0.6324 - lr: 0.0010\n",
      "Epoch 19/500\n",
      "11/11 [==============================] - 65s 6s/step - loss: 0.5246 - categorical_accuracy: 0.6617 - val_loss: 0.4942 - val_categorical_accuracy: 0.6324 - lr: 2.0000e-04\n",
      "Epoch 20/500\n",
      "11/11 [==============================] - 54s 5s/step - loss: 0.4960 - categorical_accuracy: 0.6736 - val_loss: 0.4694 - val_categorical_accuracy: 0.6324 - lr: 2.0000e-04\n",
      "Epoch 21/500\n",
      "11/11 [==============================] - 55s 5s/step - loss: 0.4588 - categorical_accuracy: 0.6766 - val_loss: 0.4269 - val_categorical_accuracy: 0.6471 - lr: 2.0000e-04\n",
      "Epoch 22/500\n",
      "11/11 [==============================] - 54s 5s/step - loss: 0.4117 - categorical_accuracy: 0.6825 - val_loss: 0.3713 - val_categorical_accuracy: 0.6471 - lr: 2.0000e-04\n",
      "Epoch 23/500\n",
      "11/11 [==============================] - 62s 6s/step - loss: 0.3329 - categorical_accuracy: 0.7122 - val_loss: 0.2746 - val_categorical_accuracy: 0.9118 - lr: 2.0000e-04\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<keras.callbacks.History at 0x1d83f889850>"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "lstm.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['categorical_accuracy'])\n",
    "lstm.fit(X_train, y_train, batch_size=batch_size, epochs=max_epochs, validation_data=(X_val, y_val), callbacks=callbacks)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8f58c4d8",
   "metadata": {},
   "source": [
    "## 6b. LSTM + Attention"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "c6e12666",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Set up Tensorboard logging and callbacks\n",
    "NAME = f\"ExerciseRecognition-AttnLSTM-{int(time.time())}\"\n",
    "log_dir = os.path.join(os.getcwd(), 'logs', NAME,'')\n",
    "tb_callback = TensorBoard(log_dir=log_dir)\n",
    "\n",
    "callbacks = [tb_callback, es_callback, lr_callback, chkpt_callback]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "07591dac",
   "metadata": {},
   "outputs": [],
   "source": [
    "def attention_block(inputs, time_steps):\n",
    "    \"\"\"\n",
    "    Attention layer for deep neural network\n",
    "    \n",
    "    \"\"\"\n",
    "    # Attention weights\n",
    "    a = Permute((2, 1))(inputs)\n",
    "    a = Dense(time_steps, activation='softmax')(a)\n",
    "    \n",
    "    # Attention vector\n",
    "    a_probs = Permute((2, 1), name='attention_vec')(a)\n",
    "    \n",
    "    # Luong's multiplicative score\n",
    "    output_attention_mul = multiply([inputs, a_probs], name='attention_mul') \n",
    "    \n",
    "    return output_attention_mul"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "c5c2e2e0",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: \"model\"\n",
      "__________________________________________________________________________________________________\n",
      " Layer (type)                   Output Shape         Param #     Connected to                     \n",
      "==================================================================================================\n",
      " input_1 (InputLayer)           [(None, 30, 132)]    0           []                               \n",
      "                                                                                                  \n",
      " bidirectional (Bidirectional)  (None, 30, 512)      796672      ['input_1[0][0]']                \n",
      "                                                                                                  \n",
      " permute (Permute)              (None, 512, 30)      0           ['bidirectional[0][0]']          \n",
      "                                                                                                  \n",
      " dense_3 (Dense)                (None, 512, 30)      930         ['permute[0][0]']                \n",
      "                                                                                                  \n",
      " attention_vec (Permute)        (None, 30, 512)      0           ['dense_3[0][0]']                \n",
      "                                                                                                  \n",
      " attention_mul (Multiply)       (None, 30, 512)      0           ['bidirectional[0][0]',          \n",
      "                                                                  'attention_vec[0][0]']          \n",
      "                                                                                                  \n",
      " flatten (Flatten)              (None, 15360)        0           ['attention_mul[0][0]']          \n",
      "                                                                                                  \n",
      " dense_4 (Dense)                (None, 512)          7864832     ['flatten[0][0]']                \n",
      "                                                                                                  \n",
      " dropout (Dropout)              (None, 512)          0           ['dense_4[0][0]']                \n",
      "                                                                                                  \n",
      " dense_5 (Dense)                (None, 3)            1539        ['dropout[0][0]']                \n",
      "                                                                                                  \n",
      "==================================================================================================\n",
      "Total params: 8,663,973\n",
      "Trainable params: 8,663,973\n",
      "Non-trainable params: 0\n",
      "__________________________________________________________________________________________________\n",
      "None\n"
     ]
    }
   ],
   "source": [
    "HIDDEN_UNITS = 256\n",
    "\n",
    "# Input\n",
    "inputs = Input(shape=(sequence_length, num_input_values))\n",
    "\n",
    "# Bi-LSTM\n",
    "lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)\n",
    "\n",
    "# Attention\n",
    "attention_mul = attention_block(lstm_out, sequence_length)\n",
    "attention_mul = Flatten()(attention_mul)\n",
    "\n",
    "# Fully Connected Layer\n",
    "x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)\n",
    "x = Dropout(0.5)(x)\n",
    "\n",
    "# Output\n",
    "x = Dense(actions.shape[0], activation='softmax')(x)\n",
    "\n",
    "# Bring it all together\n",
    "AttnLSTM = Model(inputs=[inputs], outputs=x)\n",
    "print(AttnLSTM.summary())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "cf2f988d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 0.9463 - categorical_accuracy: 0.5134 - val_loss: 0.4818 - val_categorical_accuracy: 0.8529 - lr: 0.0010\n",
      "Epoch 2/500\n",
      "11/11 [==============================] - 142s 13s/step - loss: 0.3754 - categorical_accuracy: 0.8576 - val_loss: 0.0902 - val_categorical_accuracy: 1.0000 - lr: 0.0010\n",
      "Epoch 3/500\n",
      "11/11 [==============================] - 148s 14s/step - loss: 0.0666 - categorical_accuracy: 0.9852 - val_loss: 0.0059 - val_categorical_accuracy: 1.0000 - lr: 0.0010\n",
      "Epoch 4/500\n",
      "11/11 [==============================] - 144s 13s/step - loss: 0.0391 - categorical_accuracy: 0.9852 - val_loss: 6.4974e-04 - val_categorical_accuracy: 1.0000 - lr: 0.0010\n",
      "Epoch 5/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 0.0871 - categorical_accuracy: 0.9763 - val_loss: 0.0122 - val_categorical_accuracy: 1.0000 - lr: 0.0010\n",
      "Epoch 6/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 0.0815 - categorical_accuracy: 0.9644 - val_loss: 0.0237 - val_categorical_accuracy: 1.0000 - lr: 0.0010\n",
      "Epoch 7/500\n",
      "11/11 [==============================] - 150s 14s/step - loss: 0.0190 - categorical_accuracy: 0.9911 - val_loss: 0.0328 - val_categorical_accuracy: 0.9853 - lr: 0.0010\n",
      "Epoch 8/500\n",
      "11/11 [==============================] - 142s 13s/step - loss: 0.0249 - categorical_accuracy: 0.9941 - val_loss: 6.4866e-04 - val_categorical_accuracy: 1.0000 - lr: 0.0010\n",
      "Epoch 9/500\n",
      "11/11 [==============================] - 144s 13s/step - loss: 0.0101 - categorical_accuracy: 0.9941 - val_loss: 0.0058 - val_categorical_accuracy: 1.0000 - lr: 0.0010\n",
      "Epoch 10/500\n",
      "11/11 [==============================] - 143s 13s/step - loss: 0.0173 - categorical_accuracy: 0.9941 - val_loss: 0.0012 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 11/500\n",
      "11/11 [==============================] - 154s 14s/step - loss: 0.0176 - categorical_accuracy: 0.9941 - val_loss: 0.0010 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 12/500\n",
      "11/11 [==============================] - 144s 13s/step - loss: 0.0040 - categorical_accuracy: 0.9970 - val_loss: 5.7718e-04 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 13/500\n",
      "11/11 [==============================] - 144s 13s/step - loss: 0.0015 - categorical_accuracy: 1.0000 - val_loss: 5.7380e-04 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 14/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 0.0014 - categorical_accuracy: 1.0000 - val_loss: 5.2094e-04 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 15/500\n",
      "11/11 [==============================] - 149s 14s/step - loss: 0.0015 - categorical_accuracy: 1.0000 - val_loss: 4.4772e-04 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 16/500\n",
      "11/11 [==============================] - 144s 13s/step - loss: 0.0012 - categorical_accuracy: 1.0000 - val_loss: 3.9085e-04 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 17/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 0.0010 - categorical_accuracy: 1.0000 - val_loss: 3.4933e-04 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 18/500\n",
      "11/11 [==============================] - 144s 13s/step - loss: 8.0251e-04 - categorical_accuracy: 1.0000 - val_loss: 3.1589e-04 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 19/500\n",
      "11/11 [==============================] - 149s 14s/step - loss: 6.4664e-04 - categorical_accuracy: 1.0000 - val_loss: 2.9034e-04 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 20/500\n",
      "11/11 [==============================] - 143s 13s/step - loss: 7.9226e-04 - categorical_accuracy: 1.0000 - val_loss: 2.6785e-04 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 21/500\n",
      "11/11 [==============================] - 144s 13s/step - loss: 6.2462e-04 - categorical_accuracy: 1.0000 - val_loss: 2.4908e-04 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 22/500\n",
      "11/11 [==============================] - 142s 13s/step - loss: 6.9292e-04 - categorical_accuracy: 1.0000 - val_loss: 2.3473e-04 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 23/500\n",
      "11/11 [==============================] - 157s 14s/step - loss: 5.5603e-04 - categorical_accuracy: 1.0000 - val_loss: 2.2057e-04 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 24/500\n",
      "11/11 [==============================] - 143s 13s/step - loss: 4.8737e-04 - categorical_accuracy: 1.0000 - val_loss: 2.0835e-04 - val_categorical_accuracy: 1.0000 - lr: 2.0000e-04\n",
      "Epoch 25/500\n",
      "11/11 [==============================] - 150s 14s/step - loss: 5.3003e-04 - categorical_accuracy: 1.0000 - val_loss: 2.0614e-04 - val_categorical_accuracy: 1.0000 - lr: 4.0000e-05\n",
      "Epoch 26/500\n",
      "11/11 [==============================] - 143s 13s/step - loss: 5.3267e-04 - categorical_accuracy: 1.0000 - val_loss: 2.0380e-04 - val_categorical_accuracy: 1.0000 - lr: 4.0000e-05\n",
      "Epoch 27/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 5.8821e-04 - categorical_accuracy: 1.0000 - val_loss: 2.0116e-04 - val_categorical_accuracy: 1.0000 - lr: 4.0000e-05\n",
      "Epoch 28/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 5.7868e-04 - categorical_accuracy: 1.0000 - val_loss: 1.9871e-04 - val_categorical_accuracy: 1.0000 - lr: 4.0000e-05\n",
      "Epoch 29/500\n",
      "11/11 [==============================] - 144s 13s/step - loss: 4.5697e-04 - categorical_accuracy: 1.0000 - val_loss: 1.9647e-04 - val_categorical_accuracy: 1.0000 - lr: 4.0000e-05\n",
      "Epoch 30/500\n",
      "11/11 [==============================] - 144s 13s/step - loss: 5.0632e-04 - categorical_accuracy: 1.0000 - val_loss: 1.9593e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 31/500\n",
      "11/11 [==============================] - 149s 14s/step - loss: 6.3565e-04 - categorical_accuracy: 1.0000 - val_loss: 1.9525e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 32/500\n",
      "11/11 [==============================] - 151s 13s/step - loss: 5.2290e-04 - categorical_accuracy: 1.0000 - val_loss: 1.9461e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 33/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 5.2975e-04 - categorical_accuracy: 1.0000 - val_loss: 1.9395e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 34/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 5.6739e-04 - categorical_accuracy: 1.0000 - val_loss: 1.9334e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 35/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 5.2916e-04 - categorical_accuracy: 1.0000 - val_loss: 1.9273e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 36/500\n",
      "11/11 [==============================] - 156s 14s/step - loss: 6.5789e-04 - categorical_accuracy: 1.0000 - val_loss: 1.9208e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 37/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 5.9525e-04 - categorical_accuracy: 1.0000 - val_loss: 1.9143e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 38/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 5.2344e-04 - categorical_accuracy: 1.0000 - val_loss: 1.9073e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 39/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 5.9891e-04 - categorical_accuracy: 1.0000 - val_loss: 1.9004e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 40/500\n",
      "11/11 [==============================] - 152s 14s/step - loss: 4.6774e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8929e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 41/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 5.1332e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8856e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 42/500\n",
      "11/11 [==============================] - 148s 13s/step - loss: 5.2163e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8792e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 43/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 5.1293e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8728e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 44/500\n",
      "11/11 [==============================] - 152s 14s/step - loss: 4.9182e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8657e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 45/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 4.7899e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8585e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 46/500\n",
      "11/11 [==============================] - 144s 13s/step - loss: 5.3644e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8514e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 47/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 6.9909e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8448e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 48/500\n",
      "11/11 [==============================] - 155s 14s/step - loss: 4.5525e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8381e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 49/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 5.4966e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8309e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 50/500\n",
      "11/11 [==============================] - 152s 14s/step - loss: 4.9885e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8239e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 51/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 4.9701e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8164e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 52/500\n",
      "11/11 [==============================] - 153s 14s/step - loss: 5.7490e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8081e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 53/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 6.1352e-04 - categorical_accuracy: 1.0000 - val_loss: 1.8002e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 54/500\n",
      "11/11 [==============================] - 148s 13s/step - loss: 5.3162e-04 - categorical_accuracy: 1.0000 - val_loss: 1.7926e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 55/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 4.3685e-04 - categorical_accuracy: 1.0000 - val_loss: 1.7852e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 56/500\n",
      "11/11 [==============================] - 153s 14s/step - loss: 4.6293e-04 - categorical_accuracy: 1.0000 - val_loss: 1.7782e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 57/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 4.9126e-04 - categorical_accuracy: 1.0000 - val_loss: 1.7709e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 58/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 5.6628e-04 - categorical_accuracy: 1.0000 - val_loss: 1.7628e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 59/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 4.5964e-04 - categorical_accuracy: 1.0000 - val_loss: 1.7552e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 60/500\n",
      "11/11 [==============================] - 157s 14s/step - loss: 6.6674e-04 - categorical_accuracy: 1.0000 - val_loss: 1.7479e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 61/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 5.1090e-04 - categorical_accuracy: 1.0000 - val_loss: 1.7403e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 62/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 4.9706e-04 - categorical_accuracy: 1.0000 - val_loss: 1.7322e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 63/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 5.4192e-04 - categorical_accuracy: 1.0000 - val_loss: 1.7244e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 64/500\n",
      "11/11 [==============================] - 152s 14s/step - loss: 5.9925e-04 - categorical_accuracy: 1.0000 - val_loss: 1.7167e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 65/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 4.5704e-04 - categorical_accuracy: 1.0000 - val_loss: 1.7089e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 66/500\n",
      "11/11 [==============================] - 148s 13s/step - loss: 4.4658e-04 - categorical_accuracy: 1.0000 - val_loss: 1.7017e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 67/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 4.1316e-04 - categorical_accuracy: 1.0000 - val_loss: 1.6946e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 68/500\n",
      "11/11 [==============================] - 154s 14s/step - loss: 4.0055e-04 - categorical_accuracy: 1.0000 - val_loss: 1.6878e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 69/500\n",
      "11/11 [==============================] - 160s 15s/step - loss: 5.0363e-04 - categorical_accuracy: 1.0000 - val_loss: 1.6799e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 70/500\n",
      "11/11 [==============================] - 164s 15s/step - loss: 5.1680e-04 - categorical_accuracy: 1.0000 - val_loss: 1.6720e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 71/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 4.6495e-04 - categorical_accuracy: 1.0000 - val_loss: 1.6639e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 72/500\n",
      "11/11 [==============================] - 158s 14s/step - loss: 3.7927e-04 - categorical_accuracy: 1.0000 - val_loss: 1.6566e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 73/500\n",
      "11/11 [==============================] - 152s 14s/step - loss: 4.0601e-04 - categorical_accuracy: 1.0000 - val_loss: 1.6494e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 74/500\n",
      "11/11 [==============================] - 155s 14s/step - loss: 4.0291e-04 - categorical_accuracy: 1.0000 - val_loss: 1.6418e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 75/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 4.8252e-04 - categorical_accuracy: 1.0000 - val_loss: 1.6345e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 76/500\n",
      "11/11 [==============================] - 153s 14s/step - loss: 4.6234e-04 - categorical_accuracy: 1.0000 - val_loss: 1.6267e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 77/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 4.7696e-04 - categorical_accuracy: 1.0000 - val_loss: 1.6190e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 78/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 4.7757e-04 - categorical_accuracy: 1.0000 - val_loss: 1.6107e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 79/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 4.7498e-04 - categorical_accuracy: 1.0000 - val_loss: 1.6023e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 80/500\n",
      "11/11 [==============================] - 151s 14s/step - loss: 4.5403e-04 - categorical_accuracy: 1.0000 - val_loss: 1.5941e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 81/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 4.4490e-04 - categorical_accuracy: 1.0000 - val_loss: 1.5862e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 82/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 4.3853e-04 - categorical_accuracy: 1.0000 - val_loss: 1.5785e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 83/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 4.5649e-04 - categorical_accuracy: 1.0000 - val_loss: 1.5709e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 84/500\n",
      "11/11 [==============================] - 157s 14s/step - loss: 4.5282e-04 - categorical_accuracy: 1.0000 - val_loss: 1.5631e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 85/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 4.4384e-04 - categorical_accuracy: 1.0000 - val_loss: 1.5551e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 86/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 4.5909e-04 - categorical_accuracy: 1.0000 - val_loss: 1.5476e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 87/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 4.7136e-04 - categorical_accuracy: 1.0000 - val_loss: 1.5396e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 88/500\n",
      "11/11 [==============================] - 153s 14s/step - loss: 5.0904e-04 - categorical_accuracy: 1.0000 - val_loss: 1.5321e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 89/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 4.3501e-04 - categorical_accuracy: 1.0000 - val_loss: 1.5245e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 90/500\n",
      "11/11 [==============================] - 150s 14s/step - loss: 3.7642e-04 - categorical_accuracy: 1.0000 - val_loss: 1.5165e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 91/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 4.0477e-04 - categorical_accuracy: 1.0000 - val_loss: 1.5089e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 92/500\n",
      "11/11 [==============================] - 153s 14s/step - loss: 4.2010e-04 - categorical_accuracy: 1.0000 - val_loss: 1.5009e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 93/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 4.4686e-04 - categorical_accuracy: 1.0000 - val_loss: 1.4930e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 94/500\n",
      "11/11 [==============================] - 147s 13s/step - loss: 4.8152e-04 - categorical_accuracy: 1.0000 - val_loss: 1.4845e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 95/500\n",
      "11/11 [==============================] - 148s 13s/step - loss: 4.2370e-04 - categorical_accuracy: 1.0000 - val_loss: 1.4769e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 96/500\n",
      "11/11 [==============================] - 157s 14s/step - loss: 3.8550e-04 - categorical_accuracy: 1.0000 - val_loss: 1.4696e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 97/500\n",
      "11/11 [==============================] - 145s 13s/step - loss: 3.4308e-04 - categorical_accuracy: 1.0000 - val_loss: 1.4615e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 98/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 4.1931e-04 - categorical_accuracy: 1.0000 - val_loss: 1.4544e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 99/500\n",
      "11/11 [==============================] - 152s 14s/step - loss: 3.9290e-04 - categorical_accuracy: 1.0000 - val_loss: 1.4467e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 100/500\n",
      "11/11 [==============================] - 152s 14s/step - loss: 3.4640e-04 - categorical_accuracy: 1.0000 - val_loss: 1.4395e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 101/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 3.9130e-04 - categorical_accuracy: 1.0000 - val_loss: 1.4314e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 102/500\n",
      "11/11 [==============================] - 152s 14s/step - loss: 3.4727e-04 - categorical_accuracy: 1.0000 - val_loss: 1.4239e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 103/500\n",
      "11/11 [==============================] - 146s 13s/step - loss: 4.5238e-04 - categorical_accuracy: 1.0000 - val_loss: 1.4166e-04 - val_categorical_accuracy: 1.0000 - lr: 1.0000e-05\n",
      "Epoch 104/500\n",
      " 1/11 [=>............................] - ETA: 2:14 - loss: 3.6348e-04 - categorical_accuracy: 1.0000"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "\u001b[1;32mc:\\Users\\cpras\\Documents\\GitHub\\AI_Personal_Trainer\\ExerciseDecoder.ipynb Cell 35\u001b[0m in \u001b[0;36m<cell line: 2>\u001b[1;34m()\u001b[0m\n\u001b[0;32m      <a href='vscode-notebook-cell:/c%3A/Users/cpras/Documents/GitHub/AI_Personal_Trainer/ExerciseDecoder.ipynb#ch0000034?line=0'>1</a>\u001b[0m AttnLSTM\u001b[39m.\u001b[39mcompile(optimizer\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mAdam\u001b[39m\u001b[39m'\u001b[39m, loss\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39mcategorical_crossentropy\u001b[39m\u001b[39m'\u001b[39m, metrics\u001b[39m=\u001b[39m[\u001b[39m'\u001b[39m\u001b[39mcategorical_accuracy\u001b[39m\u001b[39m'\u001b[39m])\n\u001b[1;32m----> <a href='vscode-notebook-cell:/c%3A/Users/cpras/Documents/GitHub/AI_Personal_Trainer/ExerciseDecoder.ipynb#ch0000034?line=1'>2</a>\u001b[0m AttnLSTM\u001b[39m.\u001b[39;49mfit(X_train, y_train, batch_size\u001b[39m=\u001b[39;49mbatch_size, epochs\u001b[39m=\u001b[39;49mmax_epochs, validation_data\u001b[39m=\u001b[39;49m(X_val, y_val), callbacks\u001b[39m=\u001b[39;49mcallbacks)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\utils\\traceback_utils.py:64\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m     62\u001b[0m filtered_tb \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m     63\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m---> 64\u001b[0m   \u001b[39mreturn\u001b[39;00m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m     65\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:  \u001b[39m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m     66\u001b[0m   filtered_tb \u001b[39m=\u001b[39m _process_traceback_frames(e\u001b[39m.\u001b[39m__traceback__)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\engine\\training.py:1414\u001b[0m, in \u001b[0;36mModel.fit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[0;32m   1412\u001b[0m logs \u001b[39m=\u001b[39m tmp_logs  \u001b[39m# No error, now safe to assign to logs.\u001b[39;00m\n\u001b[0;32m   1413\u001b[0m end_step \u001b[39m=\u001b[39m step \u001b[39m+\u001b[39m data_handler\u001b[39m.\u001b[39mstep_increment\n\u001b[1;32m-> 1414\u001b[0m callbacks\u001b[39m.\u001b[39;49mon_train_batch_end(end_step, logs)\n\u001b[0;32m   1415\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mstop_training:\n\u001b[0;32m   1416\u001b[0m   \u001b[39mbreak\u001b[39;00m\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\callbacks.py:438\u001b[0m, in \u001b[0;36mCallbackList.on_train_batch_end\u001b[1;34m(self, batch, logs)\u001b[0m\n\u001b[0;32m    431\u001b[0m \u001b[39m\"\"\"Calls the `on_train_batch_end` methods of its callbacks.\u001b[39;00m\n\u001b[0;32m    432\u001b[0m \n\u001b[0;32m    433\u001b[0m \u001b[39mArgs:\u001b[39;00m\n\u001b[0;32m    434\u001b[0m \u001b[39m    batch: Integer, index of batch within the current epoch.\u001b[39;00m\n\u001b[0;32m    435\u001b[0m \u001b[39m    logs: Dict. Aggregated metric results up until this batch.\u001b[39;00m\n\u001b[0;32m    436\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[0;32m    437\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_should_call_train_batch_hooks:\n\u001b[1;32m--> 438\u001b[0m   \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_call_batch_hook(ModeKeys\u001b[39m.\u001b[39;49mTRAIN, \u001b[39m'\u001b[39;49m\u001b[39mend\u001b[39;49m\u001b[39m'\u001b[39;49m, batch, logs\u001b[39m=\u001b[39;49mlogs)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\callbacks.py:297\u001b[0m, in \u001b[0;36mCallbackList._call_batch_hook\u001b[1;34m(self, mode, hook, batch, logs)\u001b[0m\n\u001b[0;32m    295\u001b[0m   \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_call_batch_begin_hook(mode, batch, logs)\n\u001b[0;32m    296\u001b[0m \u001b[39melif\u001b[39;00m hook \u001b[39m==\u001b[39m \u001b[39m'\u001b[39m\u001b[39mend\u001b[39m\u001b[39m'\u001b[39m:\n\u001b[1;32m--> 297\u001b[0m   \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_call_batch_end_hook(mode, batch, logs)\n\u001b[0;32m    298\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m    299\u001b[0m   \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\n\u001b[0;32m    300\u001b[0m       \u001b[39mf\u001b[39m\u001b[39m'\u001b[39m\u001b[39mUnrecognized hook: \u001b[39m\u001b[39m{\u001b[39;00mhook\u001b[39m}\u001b[39;00m\u001b[39m. Expected values are [\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mbegin\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m, \u001b[39m\u001b[39m\"\u001b[39m\u001b[39mend\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m]\u001b[39m\u001b[39m'\u001b[39m)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\callbacks.py:318\u001b[0m, in \u001b[0;36mCallbackList._call_batch_end_hook\u001b[1;34m(self, mode, batch, logs)\u001b[0m\n\u001b[0;32m    315\u001b[0m   batch_time \u001b[39m=\u001b[39m time\u001b[39m.\u001b[39mtime() \u001b[39m-\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_batch_start_time\n\u001b[0;32m    316\u001b[0m   \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_batch_times\u001b[39m.\u001b[39mappend(batch_time)\n\u001b[1;32m--> 318\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_call_batch_hook_helper(hook_name, batch, logs)\n\u001b[0;32m    320\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mlen\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_batch_times) \u001b[39m>\u001b[39m\u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_num_batches_for_timing_check:\n\u001b[0;32m    321\u001b[0m   end_hook_name \u001b[39m=\u001b[39m hook_name\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\callbacks.py:356\u001b[0m, in \u001b[0;36mCallbackList._call_batch_hook_helper\u001b[1;34m(self, hook_name, batch, logs)\u001b[0m\n\u001b[0;32m    354\u001b[0m \u001b[39mfor\u001b[39;00m callback \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcallbacks:\n\u001b[0;32m    355\u001b[0m   hook \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(callback, hook_name)\n\u001b[1;32m--> 356\u001b[0m   hook(batch, logs)\n\u001b[0;32m    358\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_check_timing:\n\u001b[0;32m    359\u001b[0m   \u001b[39mif\u001b[39;00m hook_name \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_hook_times:\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\callbacks.py:1380\u001b[0m, in \u001b[0;36mModelCheckpoint.on_train_batch_end\u001b[1;34m(self, batch, logs)\u001b[0m\n\u001b[0;32m   1378\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mon_train_batch_end\u001b[39m(\u001b[39mself\u001b[39m, batch, logs\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m):\n\u001b[0;32m   1379\u001b[0m   \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_should_save_on_batch(batch):\n\u001b[1;32m-> 1380\u001b[0m     \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_save_model(epoch\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_current_epoch, batch\u001b[39m=\u001b[39;49mbatch, logs\u001b[39m=\u001b[39;49mlogs)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\callbacks.py:1458\u001b[0m, in \u001b[0;36mModelCheckpoint._save_model\u001b[1;34m(self, epoch, batch, logs)\u001b[0m\n\u001b[0;32m   1455\u001b[0m       \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmodel\u001b[39m.\u001b[39msave_weights(\n\u001b[0;32m   1456\u001b[0m           filepath, overwrite\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m, options\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_options)\n\u001b[0;32m   1457\u001b[0m     \u001b[39melse\u001b[39;00m:\n\u001b[1;32m-> 1458\u001b[0m       \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mmodel\u001b[39m.\u001b[39;49msave(filepath, overwrite\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m, options\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_options)\n\u001b[0;32m   1460\u001b[0m   \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_maybe_remove_file()\n\u001b[0;32m   1461\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mIsADirectoryError\u001b[39;00m \u001b[39mas\u001b[39;00m e:  \u001b[39m# h5py 3.x\u001b[39;00m\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\utils\\traceback_utils.py:64\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m     62\u001b[0m filtered_tb \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m     63\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m---> 64\u001b[0m   \u001b[39mreturn\u001b[39;00m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m     65\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:  \u001b[39m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m     66\u001b[0m   filtered_tb \u001b[39m=\u001b[39m _process_traceback_frames(e\u001b[39m.\u001b[39m__traceback__)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\engine\\training.py:2435\u001b[0m, in \u001b[0;36mModel.save\u001b[1;34m(self, filepath, overwrite, include_optimizer, save_format, signatures, options, save_traces)\u001b[0m\n\u001b[0;32m   2393\u001b[0m \u001b[39m\"\"\"Saves the model to Tensorflow SavedModel or a single HDF5 file.\u001b[39;00m\n\u001b[0;32m   2394\u001b[0m \n\u001b[0;32m   2395\u001b[0m \u001b[39mPlease see `tf.keras.models.save_model` or the\u001b[39;00m\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m   2432\u001b[0m \u001b[39m```\u001b[39;00m\n\u001b[0;32m   2433\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[0;32m   2434\u001b[0m \u001b[39m# pylint: enable=line-too-long\u001b[39;00m\n\u001b[1;32m-> 2435\u001b[0m save\u001b[39m.\u001b[39;49msave_model(\u001b[39mself\u001b[39;49m, filepath, overwrite, include_optimizer, save_format,\n\u001b[0;32m   2436\u001b[0m                 signatures, options, save_traces)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\utils\\traceback_utils.py:64\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m     62\u001b[0m filtered_tb \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m     63\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m---> 64\u001b[0m   \u001b[39mreturn\u001b[39;00m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m     65\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:  \u001b[39m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m     66\u001b[0m   filtered_tb \u001b[39m=\u001b[39m _process_traceback_frames(e\u001b[39m.\u001b[39m__traceback__)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\saving\\save.py:153\u001b[0m, in \u001b[0;36msave_model\u001b[1;34m(model, filepath, overwrite, include_optimizer, save_format, signatures, options, save_traces)\u001b[0m\n\u001b[0;32m    151\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m    152\u001b[0m   \u001b[39mwith\u001b[39;00m generic_utils\u001b[39m.\u001b[39mSharedObjectSavingScope():\n\u001b[1;32m--> 153\u001b[0m     saved_model_save\u001b[39m.\u001b[39;49msave(model, filepath, overwrite, include_optimizer,\n\u001b[0;32m    154\u001b[0m                           signatures, options, save_traces)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\saving\\saved_model\\save.py:93\u001b[0m, in \u001b[0;36msave\u001b[1;34m(model, filepath, overwrite, include_optimizer, signatures, options, save_traces)\u001b[0m\n\u001b[0;32m     91\u001b[0m \u001b[39mwith\u001b[39;00m backend\u001b[39m.\u001b[39mdeprecated_internal_learning_phase_scope(\u001b[39m0\u001b[39m):\n\u001b[0;32m     92\u001b[0m   \u001b[39mwith\u001b[39;00m utils\u001b[39m.\u001b[39mkeras_option_scope(save_traces):\n\u001b[1;32m---> 93\u001b[0m     saved_nodes, node_paths \u001b[39m=\u001b[39m save_lib\u001b[39m.\u001b[39;49msave_and_return_nodes(\n\u001b[0;32m     94\u001b[0m         model, filepath, signatures, options)\n\u001b[0;32m     96\u001b[0m   \u001b[39m# Save all metadata to a separate file in the SavedModel directory.\u001b[39;00m\n\u001b[0;32m     97\u001b[0m   metadata \u001b[39m=\u001b[39m generate_keras_metadata(saved_nodes, node_paths)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\saved_model\\save.py:1325\u001b[0m, in \u001b[0;36msave_and_return_nodes\u001b[1;34m(obj, export_dir, signatures, options, experimental_skip_checkpoint)\u001b[0m\n\u001b[0;32m   1321\u001b[0m saved_model \u001b[39m=\u001b[39m saved_model_pb2\u001b[39m.\u001b[39mSavedModel()\n\u001b[0;32m   1322\u001b[0m meta_graph_def \u001b[39m=\u001b[39m saved_model\u001b[39m.\u001b[39mmeta_graphs\u001b[39m.\u001b[39madd()\n\u001b[0;32m   1324\u001b[0m _, exported_graph, object_saver, asset_info, saved_nodes, node_paths \u001b[39m=\u001b[39m (\n\u001b[1;32m-> 1325\u001b[0m     _build_meta_graph(obj, signatures, options, meta_graph_def))\n\u001b[0;32m   1326\u001b[0m saved_model\u001b[39m.\u001b[39msaved_model_schema_version \u001b[39m=\u001b[39m (\n\u001b[0;32m   1327\u001b[0m     constants\u001b[39m.\u001b[39mSAVED_MODEL_SCHEMA_VERSION)\n\u001b[0;32m   1329\u001b[0m \u001b[39m# Write the checkpoint, copy assets into the assets directory, and write out\u001b[39;00m\n\u001b[0;32m   1330\u001b[0m \u001b[39m# the SavedModel proto itself.\u001b[39;00m\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\saved_model\\save.py:1491\u001b[0m, in \u001b[0;36m_build_meta_graph\u001b[1;34m(obj, signatures, options, meta_graph_def)\u001b[0m\n\u001b[0;32m   1466\u001b[0m \u001b[39m\"\"\"Creates a MetaGraph under a save context.\u001b[39;00m\n\u001b[0;32m   1467\u001b[0m \n\u001b[0;32m   1468\u001b[0m \u001b[39mArgs:\u001b[39;00m\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m   1487\u001b[0m \u001b[39m  asset_info: `_AssetInfo` tuple containing external assets in the `obj`.\u001b[39;00m\n\u001b[0;32m   1488\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[0;32m   1490\u001b[0m \u001b[39mwith\u001b[39;00m save_context\u001b[39m.\u001b[39msave_context(options):\n\u001b[1;32m-> 1491\u001b[0m   \u001b[39mreturn\u001b[39;00m _build_meta_graph_impl(obj, signatures, options, meta_graph_def)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\saved_model\\save.py:1443\u001b[0m, in \u001b[0;36m_build_meta_graph_impl\u001b[1;34m(obj, signatures, options, meta_graph_def)\u001b[0m\n\u001b[0;32m   1440\u001b[0m augmented_graph_view\u001b[39m.\u001b[39mset_signature(signature_map, wrapped_functions)\n\u001b[0;32m   1442\u001b[0m \u001b[39m# Use _SaveableView to provide a frozen listing of properties and functions.\u001b[39;00m\n\u001b[1;32m-> 1443\u001b[0m saveable_view \u001b[39m=\u001b[39m _SaveableView(augmented_graph_view, options)\n\u001b[0;32m   1444\u001b[0m object_saver \u001b[39m=\u001b[39m util\u001b[39m.\u001b[39mTrackableSaver(augmented_graph_view)\n\u001b[0;32m   1445\u001b[0m asset_info, exported_graph \u001b[39m=\u001b[39m _fill_meta_graph_def(\n\u001b[0;32m   1446\u001b[0m     meta_graph_def, saveable_view, signatures,\n\u001b[0;32m   1447\u001b[0m     options\u001b[39m.\u001b[39mnamespace_whitelist, options\u001b[39m.\u001b[39mexperimental_custom_gradients)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\saved_model\\save.py:229\u001b[0m, in \u001b[0;36m_SaveableView.__init__\u001b[1;34m(self, augmented_graph_view, options)\u001b[0m\n\u001b[0;32m    224\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39maugmented_graph_view \u001b[39m=\u001b[39m augmented_graph_view\n\u001b[0;32m    225\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_options \u001b[39m=\u001b[39m options\n\u001b[0;32m    227\u001b[0m (\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_trackable_objects, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mnode_paths, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mnode_ids,\n\u001b[0;32m    228\u001b[0m  \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_slot_variables, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mobject_names) \u001b[39m=\u001b[39m (\n\u001b[1;32m--> 229\u001b[0m      \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49maugmented_graph_view\u001b[39m.\u001b[39;49mobjects_ids_and_slot_variables_and_paths())\n\u001b[0;32m    231\u001b[0m untraced_functions \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39maugmented_graph_view\u001b[39m.\u001b[39muntraced_functions\n\u001b[0;32m    232\u001b[0m \u001b[39mif\u001b[39;00m untraced_functions:\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\training\\tracking\\graph_view.py:544\u001b[0m, in \u001b[0;36mObjectGraphView.objects_ids_and_slot_variables_and_paths\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m    532\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mobjects_ids_and_slot_variables_and_paths\u001b[39m(\u001b[39mself\u001b[39m):\n\u001b[0;32m    533\u001b[0m   \u001b[39m\"\"\"Traverse the object graph and list all accessible objects.\u001b[39;00m\n\u001b[0;32m    534\u001b[0m \n\u001b[0;32m    535\u001b[0m \u001b[39m  Looks for `Trackable` objects which are dependencies of\u001b[39;00m\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m    542\u001b[0m \u001b[39m                object -> node id, slot variables, object_names)\u001b[39;00m\n\u001b[0;32m    543\u001b[0m \u001b[39m  \"\"\"\u001b[39;00m\n\u001b[1;32m--> 544\u001b[0m   trackable_objects, node_paths \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_breadth_first_traversal()\n\u001b[0;32m    545\u001b[0m   object_names \u001b[39m=\u001b[39m object_identity\u001b[39m.\u001b[39mObjectIdentityDictionary()\n\u001b[0;32m    546\u001b[0m   \u001b[39mfor\u001b[39;00m obj, path \u001b[39min\u001b[39;00m node_paths\u001b[39m.\u001b[39mitems():\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\training\\tracking\\graph_view.py:255\u001b[0m, in \u001b[0;36mObjectGraphView._breadth_first_traversal\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m    253\u001b[0m current_trackable \u001b[39m=\u001b[39m to_visit\u001b[39m.\u001b[39mpopleft()\n\u001b[0;32m    254\u001b[0m bfs_sorted\u001b[39m.\u001b[39mappend(current_trackable)\n\u001b[1;32m--> 255\u001b[0m \u001b[39mfor\u001b[39;00m name, dependency \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mlist_children(current_trackable):\n\u001b[0;32m    256\u001b[0m   \u001b[39mif\u001b[39;00m dependency \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m node_paths:\n\u001b[0;32m    257\u001b[0m     node_paths[dependency] \u001b[39m=\u001b[39m (\n\u001b[0;32m    258\u001b[0m         node_paths[current_trackable] \u001b[39m+\u001b[39m (\n\u001b[0;32m    259\u001b[0m             base\u001b[39m.\u001b[39mTrackableReference(name, dependency),))\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\saved_model\\save.py:143\u001b[0m, in \u001b[0;36m_AugmentedGraphView.list_children\u001b[1;34m(self, obj)\u001b[0m\n\u001b[0;32m    140\u001b[0m \u001b[39mif\u001b[39;00m obj \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_children_cache:\n\u001b[0;32m    141\u001b[0m   children \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_children_cache[obj] \u001b[39m=\u001b[39m {}\n\u001b[1;32m--> 143\u001b[0m   \u001b[39mfor\u001b[39;00m name, child \u001b[39min\u001b[39;00m \u001b[39msuper\u001b[39;49m(_AugmentedGraphView, \u001b[39mself\u001b[39;49m)\u001b[39m.\u001b[39;49mlist_children(\n\u001b[0;32m    144\u001b[0m       obj,\n\u001b[0;32m    145\u001b[0m       save_type\u001b[39m=\u001b[39;49mbase\u001b[39m.\u001b[39;49mSaveType\u001b[39m.\u001b[39;49mSAVEDMODEL,\n\u001b[0;32m    146\u001b[0m       cache\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_serialization_cache):\n\u001b[0;32m    147\u001b[0m     \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(child, defun\u001b[39m.\u001b[39mConcreteFunction):\n\u001b[0;32m    148\u001b[0m       child \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_maybe_uncache_variable_captures(child)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\training\\tracking\\graph_view.py:203\u001b[0m, in \u001b[0;36mObjectGraphView.list_children\u001b[1;34m(self, obj, save_type, **kwargs)\u001b[0m\n\u001b[0;32m    200\u001b[0m \u001b[39m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m    201\u001b[0m obj\u001b[39m.\u001b[39m_maybe_initialize_trackable()\n\u001b[0;32m    202\u001b[0m children \u001b[39m=\u001b[39m [base\u001b[39m.\u001b[39mTrackableReference(name, ref) \u001b[39mfor\u001b[39;00m name, ref\n\u001b[1;32m--> 203\u001b[0m             \u001b[39min\u001b[39;00m obj\u001b[39m.\u001b[39;49m_trackable_children(save_type, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\u001b[39m.\u001b[39mitems()]\n\u001b[0;32m    204\u001b[0m \u001b[39m# pylint: enable=protected-access\u001b[39;00m\n\u001b[0;32m    205\u001b[0m \n\u001b[0;32m    206\u001b[0m \u001b[39m# GraphView objects may define children of the root object that are not\u001b[39;00m\n\u001b[0;32m    207\u001b[0m \u001b[39m# actually attached, e.g. a Checkpoint object's save_counter.\u001b[39;00m\n\u001b[0;32m    208\u001b[0m \u001b[39mif\u001b[39;00m obj \u001b[39mis\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mroot \u001b[39mand\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_attached_dependencies:\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\training\\tracking\\autotrackable.py:115\u001b[0m, in \u001b[0;36mAutoTrackable._trackable_children\u001b[1;34m(self, save_type, **kwargs)\u001b[0m\n\u001b[0;32m    113\u001b[0m \u001b[39mfor\u001b[39;00m fn \u001b[39min\u001b[39;00m functions\u001b[39m.\u001b[39mvalues():\n\u001b[0;32m    114\u001b[0m   \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(fn, core_types\u001b[39m.\u001b[39mGenericFunction):\n\u001b[1;32m--> 115\u001b[0m     fn\u001b[39m.\u001b[39;49m_list_all_concrete_functions_for_serialization()  \u001b[39m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m    117\u001b[0m \u001b[39m# Additional dependencies may have been generated during function tracing\u001b[39;00m\n\u001b[0;32m    118\u001b[0m \u001b[39m# (e.g. captured variables). Make sure we return those too.\u001b[39;00m\n\u001b[0;32m    119\u001b[0m children \u001b[39m=\u001b[39m {}\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\eager\\def_function.py:1184\u001b[0m, in \u001b[0;36mFunction._list_all_concrete_functions_for_serialization\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m   1182\u001b[0m concrete_functions \u001b[39m=\u001b[39m []\n\u001b[0;32m   1183\u001b[0m \u001b[39mfor\u001b[39;00m args, kwargs \u001b[39min\u001b[39;00m seen_signatures:\n\u001b[1;32m-> 1184\u001b[0m   concrete_functions\u001b[39m.\u001b[39mappend(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mget_concrete_function(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs))\n\u001b[0;32m   1185\u001b[0m \u001b[39mreturn\u001b[39;00m concrete_functions\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\eager\\def_function.py:1239\u001b[0m, in \u001b[0;36mFunction.get_concrete_function\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1237\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mget_concrete_function\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[0;32m   1238\u001b[0m   \u001b[39m# Implements GenericFunction.get_concrete_function.\u001b[39;00m\n\u001b[1;32m-> 1239\u001b[0m   concrete \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_get_concrete_function_garbage_collected(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m   1240\u001b[0m   concrete\u001b[39m.\u001b[39m_garbage_collector\u001b[39m.\u001b[39mrelease()  \u001b[39m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m   1241\u001b[0m   \u001b[39mreturn\u001b[39;00m concrete\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\eager\\def_function.py:1230\u001b[0m, in \u001b[0;36mFunction._get_concrete_function_garbage_collected\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1225\u001b[0m   \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_stateless_fn\u001b[39m.\u001b[39m_get_concrete_function_garbage_collected(  \u001b[39m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m   1226\u001b[0m       \u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m   1227\u001b[0m \u001b[39melif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_stateful_fn \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m   1228\u001b[0m   \u001b[39m# In this case we have not created variables on the first call. So we can\u001b[39;00m\n\u001b[0;32m   1229\u001b[0m   \u001b[39m# run the first trace but we should fail if variables are created.\u001b[39;00m\n\u001b[1;32m-> 1230\u001b[0m   concrete \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_stateful_fn\u001b[39m.\u001b[39;49m_get_concrete_function_garbage_collected(  \u001b[39m# pylint: disable=protected-access\u001b[39;49;00m\n\u001b[0;32m   1231\u001b[0m       \u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m   1232\u001b[0m   \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_created_variables:\n\u001b[0;32m   1233\u001b[0m     \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39m\"\u001b[39m\u001b[39mCreating variables on a non-first call to a function\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m   1234\u001b[0m                      \u001b[39m\"\u001b[39m\u001b[39m decorated with tf.function.\u001b[39m\u001b[39m\"\u001b[39m)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\eager\\function.py:2533\u001b[0m, in \u001b[0;36mFunction._get_concrete_function_garbage_collected\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   2531\u001b[0m   args, kwargs \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m, \u001b[39mNone\u001b[39;00m\n\u001b[0;32m   2532\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_lock:\n\u001b[1;32m-> 2533\u001b[0m   graph_function, _ \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_maybe_define_function(args, kwargs)\n\u001b[0;32m   2534\u001b[0m   seen_names \u001b[39m=\u001b[39m \u001b[39mset\u001b[39m()\n\u001b[0;32m   2535\u001b[0m   captured \u001b[39m=\u001b[39m object_identity\u001b[39m.\u001b[39mObjectIdentitySet(\n\u001b[0;32m   2536\u001b[0m       graph_function\u001b[39m.\u001b[39mgraph\u001b[39m.\u001b[39minternal_captures)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\eager\\function.py:2711\u001b[0m, in \u001b[0;36mFunction._maybe_define_function\u001b[1;34m(self, args, kwargs)\u001b[0m\n\u001b[0;32m   2708\u001b[0m   cache_key \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_function_cache\u001b[39m.\u001b[39mgeneralize(cache_key)\n\u001b[0;32m   2709\u001b[0m   (args, kwargs) \u001b[39m=\u001b[39m cache_key\u001b[39m.\u001b[39m_placeholder_value()  \u001b[39m# pylint: disable=protected-access\u001b[39;00m\n\u001b[1;32m-> 2711\u001b[0m graph_function \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_create_graph_function(args, kwargs)\n\u001b[0;32m   2712\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_function_cache\u001b[39m.\u001b[39madd(cache_key, cache_key_deletion_observer,\n\u001b[0;32m   2713\u001b[0m                          graph_function)\n\u001b[0;32m   2715\u001b[0m \u001b[39mreturn\u001b[39;00m graph_function, filtered_flat_args\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\eager\\function.py:2627\u001b[0m, in \u001b[0;36mFunction._create_graph_function\u001b[1;34m(self, args, kwargs)\u001b[0m\n\u001b[0;32m   2622\u001b[0m missing_arg_names \u001b[39m=\u001b[39m [\n\u001b[0;32m   2623\u001b[0m     \u001b[39m\"\u001b[39m\u001b[39m%s\u001b[39;00m\u001b[39m_\u001b[39m\u001b[39m%d\u001b[39;00m\u001b[39m\"\u001b[39m \u001b[39m%\u001b[39m (arg, i) \u001b[39mfor\u001b[39;00m i, arg \u001b[39min\u001b[39;00m \u001b[39menumerate\u001b[39m(missing_arg_names)\n\u001b[0;32m   2624\u001b[0m ]\n\u001b[0;32m   2625\u001b[0m arg_names \u001b[39m=\u001b[39m base_arg_names \u001b[39m+\u001b[39m missing_arg_names\n\u001b[0;32m   2626\u001b[0m graph_function \u001b[39m=\u001b[39m ConcreteFunction(\n\u001b[1;32m-> 2627\u001b[0m     func_graph_module\u001b[39m.\u001b[39;49mfunc_graph_from_py_func(\n\u001b[0;32m   2628\u001b[0m         \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_name,\n\u001b[0;32m   2629\u001b[0m         \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_python_function,\n\u001b[0;32m   2630\u001b[0m         args,\n\u001b[0;32m   2631\u001b[0m         kwargs,\n\u001b[0;32m   2632\u001b[0m         \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49minput_signature,\n\u001b[0;32m   2633\u001b[0m         autograph\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_autograph,\n\u001b[0;32m   2634\u001b[0m         autograph_options\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_autograph_options,\n\u001b[0;32m   2635\u001b[0m         arg_names\u001b[39m=\u001b[39;49marg_names,\n\u001b[0;32m   2636\u001b[0m         capture_by_value\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_capture_by_value),\n\u001b[0;32m   2637\u001b[0m     \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_function_attributes,\n\u001b[0;32m   2638\u001b[0m     spec\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mfunction_spec,\n\u001b[0;32m   2639\u001b[0m     \u001b[39m# Tell the ConcreteFunction to clean up its graph once it goes out of\u001b[39;00m\n\u001b[0;32m   2640\u001b[0m     \u001b[39m# scope. This is not the default behavior since it gets used in some\u001b[39;00m\n\u001b[0;32m   2641\u001b[0m     \u001b[39m# places (like Keras) where the FuncGraph lives longer than the\u001b[39;00m\n\u001b[0;32m   2642\u001b[0m     \u001b[39m# ConcreteFunction.\u001b[39;00m\n\u001b[0;32m   2643\u001b[0m     shared_func_graph\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n\u001b[0;32m   2644\u001b[0m \u001b[39mreturn\u001b[39;00m graph_function\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\framework\\func_graph.py:1141\u001b[0m, in \u001b[0;36mfunc_graph_from_py_func\u001b[1;34m(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, acd_record_initial_resource_uses)\u001b[0m\n\u001b[0;32m   1138\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m   1139\u001b[0m   _, original_func \u001b[39m=\u001b[39m tf_decorator\u001b[39m.\u001b[39munwrap(python_func)\n\u001b[1;32m-> 1141\u001b[0m func_outputs \u001b[39m=\u001b[39m python_func(\u001b[39m*\u001b[39;49mfunc_args, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mfunc_kwargs)\n\u001b[0;32m   1143\u001b[0m \u001b[39m# invariant: `func_outputs` contains only Tensors, CompositeTensors,\u001b[39;00m\n\u001b[0;32m   1144\u001b[0m \u001b[39m# TensorArrays and `None`s.\u001b[39;00m\n\u001b[0;32m   1145\u001b[0m func_outputs \u001b[39m=\u001b[39m nest\u001b[39m.\u001b[39mmap_structure(\n\u001b[0;32m   1146\u001b[0m     convert, func_outputs, expand_composites\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\eager\\def_function.py:677\u001b[0m, in \u001b[0;36mFunction._defun_with_scope.<locals>.wrapped_fn\u001b[1;34m(*args, **kwds)\u001b[0m\n\u001b[0;32m    673\u001b[0m \u001b[39mwith\u001b[39;00m default_graph\u001b[39m.\u001b[39m_variable_creator_scope(scope, priority\u001b[39m=\u001b[39m\u001b[39m50\u001b[39m):  \u001b[39m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m    674\u001b[0m   \u001b[39m# __wrapped__ allows AutoGraph to swap in a converted function. We give\u001b[39;00m\n\u001b[0;32m    675\u001b[0m   \u001b[39m# the function a weak reference to itself to avoid a reference cycle.\u001b[39;00m\n\u001b[0;32m    676\u001b[0m   \u001b[39mwith\u001b[39;00m OptionalXlaContext(compile_with_xla):\n\u001b[1;32m--> 677\u001b[0m     out \u001b[39m=\u001b[39m weak_wrapped_fn()\u001b[39m.\u001b[39;49m__wrapped__(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwds)\n\u001b[0;32m    678\u001b[0m   \u001b[39mreturn\u001b[39;00m out\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\saving\\saved_model\\save_impl.py:572\u001b[0m, in \u001b[0;36mlayer_call_wrapper.<locals>.wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    567\u001b[0m \u001b[39mwith\u001b[39;00m base_layer_utils\u001b[39m.\u001b[39mcall_context()\u001b[39m.\u001b[39menter(\n\u001b[0;32m    568\u001b[0m     layer, inputs\u001b[39m=\u001b[39minputs, build_graph\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m, training\u001b[39m=\u001b[39mtraining,\n\u001b[0;32m    569\u001b[0m     saving\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m):\n\u001b[0;32m    570\u001b[0m   \u001b[39mwith\u001b[39;00m autocast_variable\u001b[39m.\u001b[39menable_auto_cast_variables(\n\u001b[0;32m    571\u001b[0m       layer\u001b[39m.\u001b[39m_compute_dtype_object):  \u001b[39m# pylint: disable=protected-access\u001b[39;00m\n\u001b[1;32m--> 572\u001b[0m     ret \u001b[39m=\u001b[39m method(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m    573\u001b[0m _restore_layer_losses(original_losses)\n\u001b[0;32m    574\u001b[0m \u001b[39mreturn\u001b[39;00m ret\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\saving\\saved_model\\utils.py:168\u001b[0m, in \u001b[0;36mmaybe_add_training_arg.<locals>.wrap_with_training_arg\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    165\u001b[0m   set_training_arg(training, training_arg_index, args, kwargs)\n\u001b[0;32m    166\u001b[0m   \u001b[39mreturn\u001b[39;00m wrapped_call(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[1;32m--> 168\u001b[0m \u001b[39mreturn\u001b[39;00m control_flow_util\u001b[39m.\u001b[39;49msmart_cond(\n\u001b[0;32m    169\u001b[0m     training, \u001b[39mlambda\u001b[39;49;00m: replace_training_and_call(\u001b[39mTrue\u001b[39;49;00m),\n\u001b[0;32m    170\u001b[0m     \u001b[39mlambda\u001b[39;49;00m: replace_training_and_call(\u001b[39mFalse\u001b[39;49;00m))\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\utils\\control_flow_util.py:105\u001b[0m, in \u001b[0;36msmart_cond\u001b[1;34m(pred, true_fn, false_fn, name)\u001b[0m\n\u001b[0;32m    102\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(pred, tf\u001b[39m.\u001b[39mVariable):\n\u001b[0;32m    103\u001b[0m   \u001b[39mreturn\u001b[39;00m tf\u001b[39m.\u001b[39mcond(\n\u001b[0;32m    104\u001b[0m       pred, true_fn\u001b[39m=\u001b[39mtrue_fn, false_fn\u001b[39m=\u001b[39mfalse_fn, name\u001b[39m=\u001b[39mname)\n\u001b[1;32m--> 105\u001b[0m \u001b[39mreturn\u001b[39;00m tf\u001b[39m.\u001b[39;49m__internal__\u001b[39m.\u001b[39;49msmart_cond\u001b[39m.\u001b[39;49msmart_cond(\n\u001b[0;32m    106\u001b[0m     pred, true_fn\u001b[39m=\u001b[39;49mtrue_fn, false_fn\u001b[39m=\u001b[39;49mfalse_fn, name\u001b[39m=\u001b[39;49mname)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\framework\\smart_cond.py:53\u001b[0m, in \u001b[0;36msmart_cond\u001b[1;34m(pred, true_fn, false_fn, name)\u001b[0m\n\u001b[0;32m     51\u001b[0m \u001b[39mif\u001b[39;00m pred_value \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m     52\u001b[0m   \u001b[39mif\u001b[39;00m pred_value:\n\u001b[1;32m---> 53\u001b[0m     \u001b[39mreturn\u001b[39;00m true_fn()\n\u001b[0;32m     54\u001b[0m   \u001b[39melse\u001b[39;00m:\n\u001b[0;32m     55\u001b[0m     \u001b[39mreturn\u001b[39;00m false_fn()\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\saving\\saved_model\\utils.py:169\u001b[0m, in \u001b[0;36mmaybe_add_training_arg.<locals>.wrap_with_training_arg.<locals>.<lambda>\u001b[1;34m()\u001b[0m\n\u001b[0;32m    165\u001b[0m   set_training_arg(training, training_arg_index, args, kwargs)\n\u001b[0;32m    166\u001b[0m   \u001b[39mreturn\u001b[39;00m wrapped_call(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m    168\u001b[0m \u001b[39mreturn\u001b[39;00m control_flow_util\u001b[39m.\u001b[39msmart_cond(\n\u001b[1;32m--> 169\u001b[0m     training, \u001b[39mlambda\u001b[39;00m: replace_training_and_call(\u001b[39mTrue\u001b[39;49;00m),\n\u001b[0;32m    170\u001b[0m     \u001b[39mlambda\u001b[39;00m: replace_training_and_call(\u001b[39mFalse\u001b[39;00m))\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\saving\\saved_model\\utils.py:166\u001b[0m, in \u001b[0;36mmaybe_add_training_arg.<locals>.wrap_with_training_arg.<locals>.replace_training_and_call\u001b[1;34m(training)\u001b[0m\n\u001b[0;32m    164\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mreplace_training_and_call\u001b[39m(training):\n\u001b[0;32m    165\u001b[0m   set_training_arg(training, training_arg_index, args, kwargs)\n\u001b[1;32m--> 166\u001b[0m   \u001b[39mreturn\u001b[39;00m wrapped_call(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\saving\\saved_model\\save_impl.py:634\u001b[0m, in \u001b[0;36m_wrap_call_and_conditional_losses.<locals>.call_and_return_conditional_losses\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    632\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mcall_and_return_conditional_losses\u001b[39m(\u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs):\n\u001b[0;32m    633\u001b[0m   \u001b[39m\"\"\"Returns layer (call_output, conditional losses) tuple.\"\"\"\u001b[39;00m\n\u001b[1;32m--> 634\u001b[0m   call_output \u001b[39m=\u001b[39m layer_call(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m    635\u001b[0m   \u001b[39mif\u001b[39;00m version_utils\u001b[39m.\u001b[39mis_v1_layer_or_model(layer):\n\u001b[0;32m    636\u001b[0m     conditional_losses \u001b[39m=\u001b[39m layer\u001b[39m.\u001b[39mget_losses_for(\n\u001b[0;32m    637\u001b[0m         _filtered_inputs([args, kwargs]))\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\layers\\rnn\\bidirectional.py:366\u001b[0m, in \u001b[0;36mBidirectional.call\u001b[1;34m(self, inputs, training, mask, initial_state, constants)\u001b[0m\n\u001b[0;32m    362\u001b[0m     forward_state, backward_state \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m, \u001b[39mNone\u001b[39;00m\n\u001b[0;32m    364\u001b[0m   y \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mforward_layer(forward_inputs,\n\u001b[0;32m    365\u001b[0m                          initial_state\u001b[39m=\u001b[39mforward_state, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[1;32m--> 366\u001b[0m   y_rev \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mbackward_layer(backward_inputs,\n\u001b[0;32m    367\u001b[0m                               initial_state\u001b[39m=\u001b[39;49mbackward_state, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m    368\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m    369\u001b[0m   y \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mforward_layer(inputs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\layers\\rnn\\base_rnn.py:515\u001b[0m, in \u001b[0;36mRNN.__call__\u001b[1;34m(self, inputs, initial_state, constants, **kwargs)\u001b[0m\n\u001b[0;32m    511\u001b[0m inputs, initial_state, constants \u001b[39m=\u001b[39m rnn_utils\u001b[39m.\u001b[39mstandardize_args(\n\u001b[0;32m    512\u001b[0m     inputs, initial_state, constants, \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_num_constants)\n\u001b[0;32m    514\u001b[0m \u001b[39mif\u001b[39;00m initial_state \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m constants \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m--> 515\u001b[0m   \u001b[39mreturn\u001b[39;00m \u001b[39msuper\u001b[39;49m(RNN, \u001b[39mself\u001b[39;49m)\u001b[39m.\u001b[39;49m\u001b[39m__call__\u001b[39;49m(inputs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m    517\u001b[0m \u001b[39m# If any of `initial_state` or `constants` are specified and are Keras\u001b[39;00m\n\u001b[0;32m    518\u001b[0m \u001b[39m# tensors, then add them to the inputs and temporarily modify the\u001b[39;00m\n\u001b[0;32m    519\u001b[0m \u001b[39m# input_spec to include them.\u001b[39;00m\n\u001b[0;32m    521\u001b[0m additional_inputs \u001b[39m=\u001b[39m []\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\utils\\traceback_utils.py:64\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m     62\u001b[0m filtered_tb \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m     63\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m---> 64\u001b[0m   \u001b[39mreturn\u001b[39;00m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m     65\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:  \u001b[39m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m     66\u001b[0m   filtered_tb \u001b[39m=\u001b[39m _process_traceback_frames(e\u001b[39m.\u001b[39m__traceback__)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\engine\\base_layer.py:1014\u001b[0m, in \u001b[0;36mLayer.__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1010\u001b[0m   inputs \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_maybe_cast_inputs(inputs, input_list)\n\u001b[0;32m   1012\u001b[0m \u001b[39mwith\u001b[39;00m autocast_variable\u001b[39m.\u001b[39menable_auto_cast_variables(\n\u001b[0;32m   1013\u001b[0m     \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_compute_dtype_object):\n\u001b[1;32m-> 1014\u001b[0m   outputs \u001b[39m=\u001b[39m call_fn(inputs, \u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m   1016\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_activity_regularizer:\n\u001b[0;32m   1017\u001b[0m   \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_handle_activity_regularization(inputs, outputs)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\utils\\traceback_utils.py:92\u001b[0m, in \u001b[0;36minject_argument_info_in_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m     90\u001b[0m bound_signature \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m     91\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m---> 92\u001b[0m   \u001b[39mreturn\u001b[39;00m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m     93\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:  \u001b[39m# pylint: disable=broad-except\u001b[39;00m\n\u001b[0;32m     94\u001b[0m   \u001b[39mif\u001b[39;00m \u001b[39mhasattr\u001b[39m(e, \u001b[39m'\u001b[39m\u001b[39m_keras_call_info_injected\u001b[39m\u001b[39m'\u001b[39m):\n\u001b[0;32m     95\u001b[0m     \u001b[39m# Only inject info for the innermost failing call\u001b[39;00m\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\layers\\rnn\\lstm.py:673\u001b[0m, in \u001b[0;36mLSTM.call\u001b[1;34m(self, inputs, mask, training, initial_state)\u001b[0m\n\u001b[0;32m    669\u001b[0m         last_output, outputs, new_h, new_c, runtime \u001b[39m=\u001b[39m standard_lstm(\n\u001b[0;32m    670\u001b[0m             \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mnormal_lstm_kwargs)\n\u001b[0;32m    671\u001b[0m     \u001b[39melse\u001b[39;00m:\n\u001b[0;32m    672\u001b[0m       (last_output, outputs, new_h, new_c,\n\u001b[1;32m--> 673\u001b[0m        runtime) \u001b[39m=\u001b[39m lstm_with_backend_selection(\u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mnormal_lstm_kwargs)\n\u001b[0;32m    675\u001b[0m   states \u001b[39m=\u001b[39m [new_h, new_c]\n\u001b[0;32m    677\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mstateful:\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\layers\\rnn\\lstm.py:1183\u001b[0m, in \u001b[0;36mlstm_with_backend_selection\u001b[1;34m(inputs, init_h, init_c, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask, return_sequences)\u001b[0m\n\u001b[0;32m   1177\u001b[0m   defun_gpu_lstm \u001b[39m=\u001b[39m gru_lstm_utils\u001b[39m.\u001b[39mgenerate_defun_backend(\n\u001b[0;32m   1178\u001b[0m       api_name, gru_lstm_utils\u001b[39m.\u001b[39mGPU_DEVICE_NAME, gpu_lstm_with_fallback,\n\u001b[0;32m   1179\u001b[0m       supportive_attribute)\n\u001b[0;32m   1181\u001b[0m   \u001b[39m# Call the normal LSTM impl and register the cuDNN impl function. The\u001b[39;00m\n\u001b[0;32m   1182\u001b[0m   \u001b[39m# grappler will kick in during session execution to optimize the graph.\u001b[39;00m\n\u001b[1;32m-> 1183\u001b[0m   last_output, outputs, new_h, new_c, runtime \u001b[39m=\u001b[39m defun_standard_lstm(\u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mparams)\n\u001b[0;32m   1184\u001b[0m   gru_lstm_utils\u001b[39m.\u001b[39mfunction_register(defun_gpu_lstm, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mparams)\n\u001b[0;32m   1186\u001b[0m \u001b[39mreturn\u001b[39;00m last_output, outputs, new_h, new_c, runtime\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\eager\\function.py:2452\u001b[0m, in \u001b[0;36mFunction.__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   2449\u001b[0m \u001b[39m\"\"\"Calls a graph function specialized to the inputs.\"\"\"\u001b[39;00m\n\u001b[0;32m   2450\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_lock:\n\u001b[0;32m   2451\u001b[0m   (graph_function,\n\u001b[1;32m-> 2452\u001b[0m    filtered_flat_args) \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_maybe_define_function(args, kwargs)\n\u001b[0;32m   2453\u001b[0m \u001b[39mreturn\u001b[39;00m graph_function\u001b[39m.\u001b[39m_call_flat(\n\u001b[0;32m   2454\u001b[0m     filtered_flat_args, captured_inputs\u001b[39m=\u001b[39mgraph_function\u001b[39m.\u001b[39mcaptured_inputs)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\eager\\function.py:2711\u001b[0m, in \u001b[0;36mFunction._maybe_define_function\u001b[1;34m(self, args, kwargs)\u001b[0m\n\u001b[0;32m   2708\u001b[0m   cache_key \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_function_cache\u001b[39m.\u001b[39mgeneralize(cache_key)\n\u001b[0;32m   2709\u001b[0m   (args, kwargs) \u001b[39m=\u001b[39m cache_key\u001b[39m.\u001b[39m_placeholder_value()  \u001b[39m# pylint: disable=protected-access\u001b[39;00m\n\u001b[1;32m-> 2711\u001b[0m graph_function \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_create_graph_function(args, kwargs)\n\u001b[0;32m   2712\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_function_cache\u001b[39m.\u001b[39madd(cache_key, cache_key_deletion_observer,\n\u001b[0;32m   2713\u001b[0m                          graph_function)\n\u001b[0;32m   2715\u001b[0m \u001b[39mreturn\u001b[39;00m graph_function, filtered_flat_args\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\eager\\function.py:2627\u001b[0m, in \u001b[0;36mFunction._create_graph_function\u001b[1;34m(self, args, kwargs)\u001b[0m\n\u001b[0;32m   2622\u001b[0m missing_arg_names \u001b[39m=\u001b[39m [\n\u001b[0;32m   2623\u001b[0m     \u001b[39m\"\u001b[39m\u001b[39m%s\u001b[39;00m\u001b[39m_\u001b[39m\u001b[39m%d\u001b[39;00m\u001b[39m\"\u001b[39m \u001b[39m%\u001b[39m (arg, i) \u001b[39mfor\u001b[39;00m i, arg \u001b[39min\u001b[39;00m \u001b[39menumerate\u001b[39m(missing_arg_names)\n\u001b[0;32m   2624\u001b[0m ]\n\u001b[0;32m   2625\u001b[0m arg_names \u001b[39m=\u001b[39m base_arg_names \u001b[39m+\u001b[39m missing_arg_names\n\u001b[0;32m   2626\u001b[0m graph_function \u001b[39m=\u001b[39m ConcreteFunction(\n\u001b[1;32m-> 2627\u001b[0m     func_graph_module\u001b[39m.\u001b[39;49mfunc_graph_from_py_func(\n\u001b[0;32m   2628\u001b[0m         \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_name,\n\u001b[0;32m   2629\u001b[0m         \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_python_function,\n\u001b[0;32m   2630\u001b[0m         args,\n\u001b[0;32m   2631\u001b[0m         kwargs,\n\u001b[0;32m   2632\u001b[0m         \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49minput_signature,\n\u001b[0;32m   2633\u001b[0m         autograph\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_autograph,\n\u001b[0;32m   2634\u001b[0m         autograph_options\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_autograph_options,\n\u001b[0;32m   2635\u001b[0m         arg_names\u001b[39m=\u001b[39;49marg_names,\n\u001b[0;32m   2636\u001b[0m         capture_by_value\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_capture_by_value),\n\u001b[0;32m   2637\u001b[0m     \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_function_attributes,\n\u001b[0;32m   2638\u001b[0m     spec\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mfunction_spec,\n\u001b[0;32m   2639\u001b[0m     \u001b[39m# Tell the ConcreteFunction to clean up its graph once it goes out of\u001b[39;00m\n\u001b[0;32m   2640\u001b[0m     \u001b[39m# scope. This is not the default behavior since it gets used in some\u001b[39;00m\n\u001b[0;32m   2641\u001b[0m     \u001b[39m# places (like Keras) where the FuncGraph lives longer than the\u001b[39;00m\n\u001b[0;32m   2642\u001b[0m     \u001b[39m# ConcreteFunction.\u001b[39;00m\n\u001b[0;32m   2643\u001b[0m     shared_func_graph\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n\u001b[0;32m   2644\u001b[0m \u001b[39mreturn\u001b[39;00m graph_function\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\framework\\func_graph.py:1141\u001b[0m, in \u001b[0;36mfunc_graph_from_py_func\u001b[1;34m(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, acd_record_initial_resource_uses)\u001b[0m\n\u001b[0;32m   1138\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m   1139\u001b[0m   _, original_func \u001b[39m=\u001b[39m tf_decorator\u001b[39m.\u001b[39munwrap(python_func)\n\u001b[1;32m-> 1141\u001b[0m func_outputs \u001b[39m=\u001b[39m python_func(\u001b[39m*\u001b[39;49mfunc_args, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mfunc_kwargs)\n\u001b[0;32m   1143\u001b[0m \u001b[39m# invariant: `func_outputs` contains only Tensors, CompositeTensors,\u001b[39;00m\n\u001b[0;32m   1144\u001b[0m \u001b[39m# TensorArrays and `None`s.\u001b[39;00m\n\u001b[0;32m   1145\u001b[0m func_outputs \u001b[39m=\u001b[39m nest\u001b[39m.\u001b[39mmap_structure(\n\u001b[0;32m   1146\u001b[0m     convert, func_outputs, expand_composites\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\layers\\rnn\\lstm.py:891\u001b[0m, in \u001b[0;36mstandard_lstm\u001b[1;34m(inputs, init_h, init_c, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask, return_sequences)\u001b[0m\n\u001b[0;32m    888\u001b[0m   h \u001b[39m=\u001b[39m o \u001b[39m*\u001b[39m tf\u001b[39m.\u001b[39mtanh(c)\n\u001b[0;32m    889\u001b[0m   \u001b[39mreturn\u001b[39;00m h, [h, c]\n\u001b[1;32m--> 891\u001b[0m last_output, outputs, new_states \u001b[39m=\u001b[39m backend\u001b[39m.\u001b[39;49mrnn(\n\u001b[0;32m    892\u001b[0m     step,\n\u001b[0;32m    893\u001b[0m     inputs, [init_h, init_c],\n\u001b[0;32m    894\u001b[0m     constants\u001b[39m=\u001b[39;49m\u001b[39mNone\u001b[39;49;00m,\n\u001b[0;32m    895\u001b[0m     unroll\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[0;32m    896\u001b[0m     time_major\u001b[39m=\u001b[39;49mtime_major,\n\u001b[0;32m    897\u001b[0m     mask\u001b[39m=\u001b[39;49mmask,\n\u001b[0;32m    898\u001b[0m     go_backwards\u001b[39m=\u001b[39;49mgo_backwards,\n\u001b[0;32m    899\u001b[0m     input_length\u001b[39m=\u001b[39;49m(sequence_lengths\n\u001b[0;32m    900\u001b[0m                   \u001b[39mif\u001b[39;49;00m sequence_lengths \u001b[39mis\u001b[39;49;00m \u001b[39mnot\u001b[39;49;00m \u001b[39mNone\u001b[39;49;00m \u001b[39melse\u001b[39;49;00m timesteps),\n\u001b[0;32m    901\u001b[0m     zero_output_for_mask\u001b[39m=\u001b[39;49mzero_output_for_mask,\n\u001b[0;32m    902\u001b[0m     return_all_outputs\u001b[39m=\u001b[39;49mreturn_sequences)\n\u001b[0;32m    903\u001b[0m \u001b[39mreturn\u001b[39;00m (last_output, outputs, new_states[\u001b[39m0\u001b[39m], new_states[\u001b[39m1\u001b[39m],\n\u001b[0;32m    904\u001b[0m         gru_lstm_utils\u001b[39m.\u001b[39mruntime(gru_lstm_utils\u001b[39m.\u001b[39mRUNTIME_CPU))\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    148\u001b[0m filtered_tb \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m    149\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m   \u001b[39mreturn\u001b[39;00m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m    151\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:\n\u001b[0;32m    152\u001b[0m   filtered_tb \u001b[39m=\u001b[39m _process_traceback_frames(e\u001b[39m.\u001b[39m__traceback__)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\util\\dispatch.py:1082\u001b[0m, in \u001b[0;36madd_dispatch_support.<locals>.decorator.<locals>.op_dispatch_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m   1080\u001b[0m \u001b[39m# Fallback dispatch system (dispatch v1):\u001b[39;00m\n\u001b[0;32m   1081\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m-> 1082\u001b[0m   \u001b[39mreturn\u001b[39;00m dispatch_target(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m   1083\u001b[0m \u001b[39mexcept\u001b[39;00m (\u001b[39mTypeError\u001b[39;00m, \u001b[39mValueError\u001b[39;00m):\n\u001b[0;32m   1084\u001b[0m   \u001b[39m# Note: convert_to_eager_tensor currently raises a ValueError, not a\u001b[39;00m\n\u001b[0;32m   1085\u001b[0m   \u001b[39m# TypeError, when given unexpected types.  So we need to catch both.\u001b[39;00m\n\u001b[0;32m   1086\u001b[0m   result \u001b[39m=\u001b[39m dispatch(op_dispatch_handler, args, kwargs)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\backend.py:4624\u001b[0m, in \u001b[0;36mrnn\u001b[1;34m(step_function, inputs, initial_states, go_backwards, mask, constants, unroll, input_length, time_major, zero_output_for_mask, return_all_outputs)\u001b[0m\n\u001b[0;32m   4620\u001b[0m input_time_zero \u001b[39m=\u001b[39m tf\u001b[39m.\u001b[39mnest\u001b[39m.\u001b[39mpack_sequence_as(inputs,\n\u001b[0;32m   4621\u001b[0m                                         [inp[\u001b[39m0\u001b[39m] \u001b[39mfor\u001b[39;00m inp \u001b[39min\u001b[39;00m flatted_inputs])\n\u001b[0;32m   4622\u001b[0m \u001b[39m# output_time_zero is used to determine the cell output shape and its dtype.\u001b[39;00m\n\u001b[0;32m   4623\u001b[0m \u001b[39m# the value is discarded.\u001b[39;00m\n\u001b[1;32m-> 4624\u001b[0m output_time_zero, _ \u001b[39m=\u001b[39m step_function(\n\u001b[0;32m   4625\u001b[0m     input_time_zero, \u001b[39mtuple\u001b[39;49m(initial_states) \u001b[39m+\u001b[39;49m \u001b[39mtuple\u001b[39;49m(constants))\n\u001b[0;32m   4627\u001b[0m output_ta_size \u001b[39m=\u001b[39m time_steps_t \u001b[39mif\u001b[39;00m return_all_outputs \u001b[39melse\u001b[39;00m \u001b[39m1\u001b[39m\n\u001b[0;32m   4628\u001b[0m output_ta \u001b[39m=\u001b[39m \u001b[39mtuple\u001b[39m(\n\u001b[0;32m   4629\u001b[0m     tf\u001b[39m.\u001b[39mTensorArray(\n\u001b[0;32m   4630\u001b[0m         dtype\u001b[39m=\u001b[39mout\u001b[39m.\u001b[39mdtype,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m   4633\u001b[0m         tensor_array_name\u001b[39m=\u001b[39m\u001b[39m'\u001b[39m\u001b[39moutput_ta_\u001b[39m\u001b[39m%s\u001b[39;00m\u001b[39m'\u001b[39m \u001b[39m%\u001b[39m i)\n\u001b[0;32m   4634\u001b[0m     \u001b[39mfor\u001b[39;00m i, out \u001b[39min\u001b[39;00m \u001b[39menumerate\u001b[39m(tf\u001b[39m.\u001b[39mnest\u001b[39m.\u001b[39mflatten(output_time_zero)))\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\layers\\rnn\\lstm.py:878\u001b[0m, in \u001b[0;36mstandard_lstm.<locals>.step\u001b[1;34m(cell_inputs, cell_states)\u001b[0m\n\u001b[0;32m    875\u001b[0m c_tm1 \u001b[39m=\u001b[39m cell_states[\u001b[39m1\u001b[39m]  \u001b[39m# previous carry state\u001b[39;00m\n\u001b[0;32m    877\u001b[0m z \u001b[39m=\u001b[39m backend\u001b[39m.\u001b[39mdot(cell_inputs, kernel)\n\u001b[1;32m--> 878\u001b[0m z \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m backend\u001b[39m.\u001b[39;49mdot(h_tm1, recurrent_kernel)\n\u001b[0;32m    879\u001b[0m z \u001b[39m=\u001b[39m backend\u001b[39m.\u001b[39mbias_add(z, bias)\n\u001b[0;32m    881\u001b[0m z0, z1, z2, z3 \u001b[39m=\u001b[39m tf\u001b[39m.\u001b[39msplit(z, \u001b[39m4\u001b[39m, axis\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    148\u001b[0m filtered_tb \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m    149\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m   \u001b[39mreturn\u001b[39;00m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m    151\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:\n\u001b[0;32m    152\u001b[0m   filtered_tb \u001b[39m=\u001b[39m _process_traceback_frames(e\u001b[39m.\u001b[39m__traceback__)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\util\\dispatch.py:1082\u001b[0m, in \u001b[0;36madd_dispatch_support.<locals>.decorator.<locals>.op_dispatch_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m   1080\u001b[0m \u001b[39m# Fallback dispatch system (dispatch v1):\u001b[39;00m\n\u001b[0;32m   1081\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m-> 1082\u001b[0m   \u001b[39mreturn\u001b[39;00m dispatch_target(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m   1083\u001b[0m \u001b[39mexcept\u001b[39;00m (\u001b[39mTypeError\u001b[39;00m, \u001b[39mValueError\u001b[39;00m):\n\u001b[0;32m   1084\u001b[0m   \u001b[39m# Note: convert_to_eager_tensor currently raises a ValueError, not a\u001b[39;00m\n\u001b[0;32m   1085\u001b[0m   \u001b[39m# TypeError, when given unexpected types.  So we need to catch both.\u001b[39;00m\n\u001b[0;32m   1086\u001b[0m   result \u001b[39m=\u001b[39m dispatch(op_dispatch_handler, args, kwargs)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\keras\\backend.py:2223\u001b[0m, in \u001b[0;36mdot\u001b[1;34m(x, y)\u001b[0m\n\u001b[0;32m   2221\u001b[0m   out \u001b[39m=\u001b[39m tf\u001b[39m.\u001b[39msparse\u001b[39m.\u001b[39msparse_dense_matmul(x, y)\n\u001b[0;32m   2222\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m-> 2223\u001b[0m   out \u001b[39m=\u001b[39m tf\u001b[39m.\u001b[39;49mmatmul(x, y)\n\u001b[0;32m   2224\u001b[0m \u001b[39mreturn\u001b[39;00m out\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    148\u001b[0m filtered_tb \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m    149\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m   \u001b[39mreturn\u001b[39;00m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m    151\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:\n\u001b[0;32m    152\u001b[0m   filtered_tb \u001b[39m=\u001b[39m _process_traceback_frames(e\u001b[39m.\u001b[39m__traceback__)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\util\\dispatch.py:1082\u001b[0m, in \u001b[0;36madd_dispatch_support.<locals>.decorator.<locals>.op_dispatch_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m   1080\u001b[0m \u001b[39m# Fallback dispatch system (dispatch v1):\u001b[39;00m\n\u001b[0;32m   1081\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m-> 1082\u001b[0m   \u001b[39mreturn\u001b[39;00m dispatch_target(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m   1083\u001b[0m \u001b[39mexcept\u001b[39;00m (\u001b[39mTypeError\u001b[39;00m, \u001b[39mValueError\u001b[39;00m):\n\u001b[0;32m   1084\u001b[0m   \u001b[39m# Note: convert_to_eager_tensor currently raises a ValueError, not a\u001b[39;00m\n\u001b[0;32m   1085\u001b[0m   \u001b[39m# TypeError, when given unexpected types.  So we need to catch both.\u001b[39;00m\n\u001b[0;32m   1086\u001b[0m   result \u001b[39m=\u001b[39m dispatch(op_dispatch_handler, args, kwargs)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\ops\\math_ops.py:3713\u001b[0m, in \u001b[0;36mmatmul\u001b[1;34m(a, b, transpose_a, transpose_b, adjoint_a, adjoint_b, a_is_sparse, b_is_sparse, output_type, name)\u001b[0m\n\u001b[0;32m   3710\u001b[0m   \u001b[39mreturn\u001b[39;00m gen_math_ops\u001b[39m.\u001b[39mbatch_mat_mul_v3(\n\u001b[0;32m   3711\u001b[0m       a, b, adj_x\u001b[39m=\u001b[39madjoint_a, adj_y\u001b[39m=\u001b[39madjoint_b, Tout\u001b[39m=\u001b[39moutput_type, name\u001b[39m=\u001b[39mname)\n\u001b[0;32m   3712\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m-> 3713\u001b[0m   \u001b[39mreturn\u001b[39;00m gen_math_ops\u001b[39m.\u001b[39;49mmat_mul(\n\u001b[0;32m   3714\u001b[0m       a, b, transpose_a\u001b[39m=\u001b[39;49mtranspose_a, transpose_b\u001b[39m=\u001b[39;49mtranspose_b, name\u001b[39m=\u001b[39;49mname)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\ops\\gen_math_ops.py:6033\u001b[0m, in \u001b[0;36mmat_mul\u001b[1;34m(a, b, transpose_a, transpose_b, name)\u001b[0m\n\u001b[0;32m   6031\u001b[0m   transpose_b \u001b[39m=\u001b[39m \u001b[39mFalse\u001b[39;00m\n\u001b[0;32m   6032\u001b[0m transpose_b \u001b[39m=\u001b[39m _execute\u001b[39m.\u001b[39mmake_bool(transpose_b, \u001b[39m\"\u001b[39m\u001b[39mtranspose_b\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m-> 6033\u001b[0m _, _, _op, _outputs \u001b[39m=\u001b[39m _op_def_library\u001b[39m.\u001b[39;49m_apply_op_helper(\n\u001b[0;32m   6034\u001b[0m       \u001b[39m\"\u001b[39;49m\u001b[39mMatMul\u001b[39;49m\u001b[39m\"\u001b[39;49m, a\u001b[39m=\u001b[39;49ma, b\u001b[39m=\u001b[39;49mb, transpose_a\u001b[39m=\u001b[39;49mtranspose_a, transpose_b\u001b[39m=\u001b[39;49mtranspose_b,\n\u001b[0;32m   6035\u001b[0m                 name\u001b[39m=\u001b[39;49mname)\n\u001b[0;32m   6036\u001b[0m _result \u001b[39m=\u001b[39m _outputs[:]\n\u001b[0;32m   6037\u001b[0m \u001b[39mif\u001b[39;00m _execute\u001b[39m.\u001b[39mmust_record_gradient():\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\framework\\op_def_library.py:797\u001b[0m, in \u001b[0;36m_apply_op_helper\u001b[1;34m(op_type_name, name, **keywords)\u001b[0m\n\u001b[0;32m    792\u001b[0m must_colocate_inputs \u001b[39m=\u001b[39m [val \u001b[39mfor\u001b[39;00m arg, val \u001b[39min\u001b[39;00m \u001b[39mzip\u001b[39m(op_def\u001b[39m.\u001b[39minput_arg, inputs)\n\u001b[0;32m    793\u001b[0m                         \u001b[39mif\u001b[39;00m arg\u001b[39m.\u001b[39mis_ref]\n\u001b[0;32m    794\u001b[0m \u001b[39mwith\u001b[39;00m _MaybeColocateWith(must_colocate_inputs):\n\u001b[0;32m    795\u001b[0m   \u001b[39m# Add Op to graph\u001b[39;00m\n\u001b[0;32m    796\u001b[0m   \u001b[39m# pylint: disable=protected-access\u001b[39;00m\n\u001b[1;32m--> 797\u001b[0m   op \u001b[39m=\u001b[39m g\u001b[39m.\u001b[39;49m_create_op_internal(op_type_name, inputs, dtypes\u001b[39m=\u001b[39;49m\u001b[39mNone\u001b[39;49;00m,\n\u001b[0;32m    798\u001b[0m                              name\u001b[39m=\u001b[39;49mscope, input_types\u001b[39m=\u001b[39;49minput_types,\n\u001b[0;32m    799\u001b[0m                              attrs\u001b[39m=\u001b[39;49mattr_protos, op_def\u001b[39m=\u001b[39;49mop_def)\n\u001b[0;32m    801\u001b[0m \u001b[39m# `outputs` is returned as a separate return value so that the output\u001b[39;00m\n\u001b[0;32m    802\u001b[0m \u001b[39m# tensors can the `op` per se can be decoupled so that the\u001b[39;00m\n\u001b[0;32m    803\u001b[0m \u001b[39m# `op_callbacks` can function properly. See framework/op_callbacks.py\u001b[39;00m\n\u001b[0;32m    804\u001b[0m \u001b[39m# for more details.\u001b[39;00m\n\u001b[0;32m    805\u001b[0m outputs \u001b[39m=\u001b[39m op\u001b[39m.\u001b[39moutputs\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\framework\\func_graph.py:694\u001b[0m, in \u001b[0;36mFuncGraph._create_op_internal\u001b[1;34m(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)\u001b[0m\n\u001b[0;32m    692\u001b[0m   inp \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcapture(inp)\n\u001b[0;32m    693\u001b[0m   captured_inputs\u001b[39m.\u001b[39mappend(inp)\n\u001b[1;32m--> 694\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39msuper\u001b[39;49m(FuncGraph, \u001b[39mself\u001b[39;49m)\u001b[39m.\u001b[39;49m_create_op_internal(  \u001b[39m# pylint: disable=protected-access\u001b[39;49;00m\n\u001b[0;32m    695\u001b[0m     op_type, captured_inputs, dtypes, input_types, name, attrs, op_def,\n\u001b[0;32m    696\u001b[0m     compute_device)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\framework\\ops.py:3754\u001b[0m, in \u001b[0;36mGraph._create_op_internal\u001b[1;34m(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)\u001b[0m\n\u001b[0;32m   3751\u001b[0m \u001b[39m# _create_op_helper mutates the new Operation. `_mutation_lock` ensures a\u001b[39;00m\n\u001b[0;32m   3752\u001b[0m \u001b[39m# Session.run call cannot occur between creating and mutating the op.\u001b[39;00m\n\u001b[0;32m   3753\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_mutation_lock():\n\u001b[1;32m-> 3754\u001b[0m   ret \u001b[39m=\u001b[39m Operation(\n\u001b[0;32m   3755\u001b[0m       node_def,\n\u001b[0;32m   3756\u001b[0m       \u001b[39mself\u001b[39;49m,\n\u001b[0;32m   3757\u001b[0m       inputs\u001b[39m=\u001b[39;49minputs,\n\u001b[0;32m   3758\u001b[0m       output_types\u001b[39m=\u001b[39;49mdtypes,\n\u001b[0;32m   3759\u001b[0m       control_inputs\u001b[39m=\u001b[39;49mcontrol_inputs,\n\u001b[0;32m   3760\u001b[0m       input_types\u001b[39m=\u001b[39;49minput_types,\n\u001b[0;32m   3761\u001b[0m       original_op\u001b[39m=\u001b[39;49m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_default_original_op,\n\u001b[0;32m   3762\u001b[0m       op_def\u001b[39m=\u001b[39;49mop_def)\n\u001b[0;32m   3763\u001b[0m   \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_create_op_helper(ret, compute_device\u001b[39m=\u001b[39mcompute_device)\n\u001b[0;32m   3764\u001b[0m \u001b[39mreturn\u001b[39;00m ret\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\framework\\ops.py:2129\u001b[0m, in \u001b[0;36mOperation.__init__\u001b[1;34m(self, node_def, g, inputs, output_types, control_inputs, input_types, original_op, op_def)\u001b[0m\n\u001b[0;32m   2127\u001b[0m   \u001b[39mif\u001b[39;00m op_def \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m   2128\u001b[0m     op_def \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_graph\u001b[39m.\u001b[39m_get_op_def(node_def\u001b[39m.\u001b[39mop)\n\u001b[1;32m-> 2129\u001b[0m   \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_c_op \u001b[39m=\u001b[39m _create_c_op(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_graph, node_def, inputs,\n\u001b[0;32m   2130\u001b[0m                             control_input_ops, op_def)\n\u001b[0;32m   2131\u001b[0m   name \u001b[39m=\u001b[39m compat\u001b[39m.\u001b[39mas_str(node_def\u001b[39m.\u001b[39mname)\n\u001b[0;32m   2133\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_traceback \u001b[39m=\u001b[39m tf_stack\u001b[39m.\u001b[39mextract_stack_for_node(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_c_op)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    148\u001b[0m filtered_tb \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m    149\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m   \u001b[39mreturn\u001b[39;00m fn(\u001b[39m*\u001b[39;49margs, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[0;32m    151\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:\n\u001b[0;32m    152\u001b[0m   filtered_tb \u001b[39m=\u001b[39m _process_traceback_frames(e\u001b[39m.\u001b[39m__traceback__)\n",
      "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\tensorflow\\python\\framework\\ops.py:1960\u001b[0m, in \u001b[0;36m_create_c_op\u001b[1;34m(graph, node_def, inputs, control_inputs, op_def)\u001b[0m\n\u001b[0;32m   1956\u001b[0m   pywrap_tf_session\u001b[39m.\u001b[39mTF_SetAttrValueProto(op_desc, compat\u001b[39m.\u001b[39mas_str(name),\n\u001b[0;32m   1957\u001b[0m                                          serialized)\n\u001b[0;32m   1959\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m-> 1960\u001b[0m   c_op \u001b[39m=\u001b[39m pywrap_tf_session\u001b[39m.\u001b[39;49mTF_FinishOperation(op_desc)\n\u001b[0;32m   1961\u001b[0m \u001b[39mexcept\u001b[39;00m errors\u001b[39m.\u001b[39mInvalidArgumentError \u001b[39mas\u001b[39;00m e:\n\u001b[0;32m   1962\u001b[0m   \u001b[39m# Convert to ValueError for backwards compatibility.\u001b[39;00m\n\u001b[0;32m   1963\u001b[0m   \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(e\u001b[39m.\u001b[39mmessage)\n",
      "\u001b[1;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "AttnLSTM.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['categorical_accuracy'])\n",
    "AttnLSTM.fit(X_train, y_train, batch_size=batch_size, epochs=max_epochs, validation_data=(X_val, y_val), callbacks=callbacks)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "b89f67cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Model map\n",
    "models = {\n",
    "    'LSTM': lstm, \n",
    "    'LSTM_Attention_128HUs': AttnLSTM, \n",
    "}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a928f612",
   "metadata": {},
   "source": [
    "# 7a. Save Weights"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "0a7647ad",
   "metadata": {},
   "outputs": [],
   "source": [
    "for model_name, model in models.items():\n",
    "    save_dir = os.path.join(os.getcwd(), f\"{model_name}.h5\")\n",
    "    model.save(save_dir)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "13fecf26",
   "metadata": {},
   "source": [
    "# 7b. Load Weights"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "ed0114a6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Run model rebuild before doing this\n",
    "for model_name, model in models.items():\n",
    "    load_dir = os.path.join(os.getcwd(), f\"{model_name}.h5\")\n",
    "    model.load_weights(load_dir)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1b7747c6",
   "metadata": {},
   "source": [
    "# 8. Make Predictions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "2101a592",
   "metadata": {},
   "outputs": [],
   "source": [
    "for model in models.values():\n",
    "    res = model.predict(X_test, verbose=0)   "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6b36c98e",
   "metadata": {},
   "source": [
    "# 9. Evaluations using Confusion Matrix and Accuracy"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "id": "ecf242d9",
   "metadata": {},
   "outputs": [],
   "source": [
    "eval_results = {}\n",
    "eval_results['confusion matrix'] = None\n",
    "eval_results['accuracy'] = None\n",
    "eval_results['precision'] = None\n",
    "eval_results['recall'] = None\n",
    "eval_results['f1 score'] = None\n",
    "\n",
    "confusion_matrices = {}\n",
    "classification_accuracies = {}   \n",
    "precisions = {}\n",
    "recalls = {}\n",
    "f1_scores = {} "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "74d6778f",
   "metadata": {},
   "source": [
    "## 9a. Confusion Matrices"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "id": "fccbb90f",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "LSTM confusion matrix: \n",
      "[[[27  5]\n",
      "  [ 1 12]]\n",
      "\n",
      " [[26  0]\n",
      "  [ 5 14]]\n",
      "\n",
      " [[31  1]\n",
      "  [ 0 13]]]\n",
      "LSTM_Attention_128HUs confusion matrix: \n",
      "[[[32  0]\n",
      "  [ 0 13]]\n",
      "\n",
      " [[26  0]\n",
      "  [ 0 19]]\n",
      "\n",
      " [[32  0]\n",
      "  [ 0 13]]]\n"
     ]
    }
   ],
   "source": [
    "for model_name, model in models.items():\n",
    "    yhat = model.predict(X_test, verbose=0)\n",
    "    \n",
    "    # Get list of classification predictions\n",
    "    ytrue = np.argmax(y_test, axis=1).tolist()\n",
    "    yhat = np.argmax(yhat, axis=1).tolist()\n",
    "    \n",
    "    # Confusion matrix\n",
    "    confusion_matrices[model_name] = multilabel_confusion_matrix(ytrue, yhat)\n",
    "    print(f\"{model_name} confusion matrix: {os.linesep}{confusion_matrices[model_name]}\")\n",
    "\n",
    "# Collect results \n",
    "eval_results['confusion matrix'] = confusion_matrices"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b76c6dc5",
   "metadata": {},
   "source": [
    "## 9b. Accuracy"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "id": "e36146f5",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "LSTM classification accuracy = 86.667%\n",
      "LSTM_Attention_128HUs classification accuracy = 100.0%\n"
     ]
    }
   ],
   "source": [
    "for model_name, model in models.items():\n",
    "    yhat = model.predict(X_test, verbose=0)\n",
    "    \n",
    "    # Get list of classification predictions\n",
    "    ytrue = np.argmax(y_test, axis=1).tolist()\n",
    "    yhat = np.argmax(yhat, axis=1).tolist()\n",
    "    \n",
    "    # Model accuracy\n",
    "    classification_accuracies[model_name] = accuracy_score(ytrue, yhat)    \n",
    "    print(f\"{model_name} classification accuracy = {round(classification_accuracies[model_name]*100,3)}%\")\n",
    "\n",
    "# Collect results \n",
    "eval_results['accuracy'] = classification_accuracies"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "33efa73a",
   "metadata": {},
   "source": [
    "## 9c. Precision, Recall, and F1 Score"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "id": "35067c48",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "LSTM weighted average precision = 0.894\n",
      "LSTM weighted average recall = 0.867\n",
      "LSTM weighted average f1-score = 0.868\n",
      "\n",
      "LSTM_Attention_128HUs weighted average precision = 1.0\n",
      "LSTM_Attention_128HUs weighted average recall = 1.0\n",
      "LSTM_Attention_128HUs weighted average f1-score = 1.0\n",
      "\n"
     ]
    }
   ],
   "source": [
    "for model_name, model in models.items():\n",
    "    yhat = model.predict(X_test, verbose=0)\n",
    "    \n",
    "    # Get list of classification predictions\n",
    "    ytrue = np.argmax(y_test, axis=1).tolist()\n",
    "    yhat = np.argmax(yhat, axis=1).tolist()\n",
    "    \n",
    "    # Precision, recall, and f1 score\n",
    "    report = classification_report(ytrue, yhat, target_names=actions, output_dict=True)\n",
    "    \n",
    "    precisions[model_name] = report['weighted avg']['precision']\n",
    "    recalls[model_name] = report['weighted avg']['recall']\n",
    "    f1_scores[model_name] = report['weighted avg']['f1-score'] \n",
    "   \n",
    "    print(f\"{model_name} weighted average precision = {round(precisions[model_name],3)}\")\n",
    "    print(f\"{model_name} weighted average recall = {round(recalls[model_name],3)}\")\n",
    "    print(f\"{model_name} weighted average f1-score = {round(f1_scores[model_name],3)}\\n\")\n",
    "\n",
    "# Collect results \n",
    "eval_results['precision'] = precisions\n",
    "eval_results['recall'] = recalls\n",
    "eval_results['f1 score'] = f1_scores"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e5d39476",
   "metadata": {},
   "source": [
    "# 10. Choose Model to Test in Real Time"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "id": "d72d0605",
   "metadata": {},
   "outputs": [],
   "source": [
    "model = AttnLSTM\n",
    "model_name = 'AttnLSTM'"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9f0015ce",
   "metadata": {},
   "source": [
    "# 11. Calculate Joint Angles & Count Reps"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "id": "f172932f",
   "metadata": {},
   "outputs": [],
   "source": [
    "def calculate_angle(a,b,c):\n",
    "    \"\"\"\n",
    "    Computes 3D joint angle inferred by 3 keypoints and their relative positions to one another\n",
    "    \n",
    "    \"\"\"\n",
    "    a = np.array(a) # First\n",
    "    b = np.array(b) # Mid\n",
    "    c = np.array(c) # End\n",
    "    \n",
    "    radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])\n",
    "    angle = np.abs(radians*180.0/np.pi)\n",
    "    \n",
    "    if angle >180.0:\n",
    "        angle = 360-angle\n",
    "        \n",
    "    return angle "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "id": "26f357fe",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_coordinates(landmarks, mp_pose, side, joint):\n",
    "    \"\"\"\n",
    "    Retrieves x and y coordinates of a particular keypoint from the pose estimation model\n",
    "         \n",
    "     Args:\n",
    "         landmarks: processed keypoints from the pose estimation model\n",
    "         mp_pose: Mediapipe pose estimation model\n",
    "         side: 'left' or 'right'. Denotes the side of the body of the landmark of interest.\n",
    "         joint: 'shoulder', 'elbow', 'wrist', 'hip', 'knee', or 'ankle'. Denotes which body joint is associated with the landmark of interest.\n",
    "    \n",
    "    \"\"\"\n",
    "    coord = getattr(mp_pose.PoseLandmark,side.upper()+\"_\"+joint.upper())\n",
    "    x_coord_val = landmarks[coord.value].x\n",
    "    y_coord_val = landmarks[coord.value].y\n",
    "    return [x_coord_val, y_coord_val]            "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "id": "f11273cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "def viz_joint_angle(image, angle, joint):\n",
    "    \"\"\"\n",
    "    Displays the joint angle value near the joint within the image frame\n",
    "    \n",
    "    \"\"\"\n",
    "    cv2.putText(image, str(int(angle)), \n",
    "                   tuple(np.multiply(joint, [640, 480]).astype(int)), \n",
    "                   cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA\n",
    "                        )\n",
    "    return"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "id": "b64050d3",
   "metadata": {},
   "outputs": [],
   "source": [
    "def count_reps(image, current_action, landmarks, mp_pose):\n",
    "    \"\"\"\n",
    "    Counts repetitions of each exercise. Global count and stage (i.e., state) variables are updated within this function.\n",
    "    \n",
    "    \"\"\"\n",
    "\n",
    "    global curl_counter, press_counter, squat_counter, curl_stage, press_stage, squat_stage\n",
    "    \n",
    "    if current_action == 'curl':\n",
    "        # Get coords\n",
    "        shoulder = get_coordinates(landmarks, mp_pose, 'left', 'shoulder')\n",
    "        elbow = get_coordinates(landmarks, mp_pose, 'left', 'elbow')\n",
    "        wrist = get_coordinates(landmarks, mp_pose, 'left', 'wrist')\n",
    "        \n",
    "        # calculate elbow angle\n",
    "        angle = calculate_angle(shoulder, elbow, wrist)\n",
    "        \n",
    "        # curl counter logic\n",
    "        if angle < 30:\n",
    "            curl_stage = \"up\" \n",
    "        if angle > 140 and curl_stage =='up':\n",
    "            curl_stage=\"down\"  \n",
    "            curl_counter +=1\n",
    "        press_stage = None\n",
    "        squat_stage = None\n",
    "            \n",
    "        # Viz joint angle\n",
    "        viz_joint_angle(image, angle, elbow)\n",
    "        \n",
    "    elif current_action == 'press':\n",
    "        \n",
    "        # Get coords\n",
    "        shoulder = get_coordinates(landmarks, mp_pose, 'left', 'shoulder')\n",
    "        elbow = get_coordinates(landmarks, mp_pose, 'left', 'elbow')\n",
    "        wrist = get_coordinates(landmarks, mp_pose, 'left', 'wrist')\n",
    "\n",
    "        # Calculate elbow angle\n",
    "        elbow_angle = calculate_angle(shoulder, elbow, wrist)\n",
    "        \n",
    "        # Compute distances between joints\n",
    "        shoulder2elbow_dist = abs(math.dist(shoulder,elbow))\n",
    "        shoulder2wrist_dist = abs(math.dist(shoulder,wrist))\n",
    "        \n",
    "        # Press counter logic\n",
    "        if (elbow_angle > 130) and (shoulder2elbow_dist < shoulder2wrist_dist):\n",
    "            press_stage = \"up\"\n",
    "        if (elbow_angle < 50) and (shoulder2elbow_dist > shoulder2wrist_dist) and (press_stage =='up'):\n",
    "            press_stage='down'\n",
    "            press_counter += 1\n",
    "        curl_stage = None\n",
    "        squat_stage = None\n",
    "            \n",
    "        # Viz joint angle\n",
    "        viz_joint_angle(image, elbow_angle, elbow)\n",
    "        \n",
    "    elif current_action == 'squat':\n",
    "        # Get coords\n",
    "        # left side\n",
    "        left_shoulder = get_coordinates(landmarks, mp_pose, 'left', 'shoulder')\n",
    "        left_hip = get_coordinates(landmarks, mp_pose, 'left', 'hip')\n",
    "        left_knee = get_coordinates(landmarks, mp_pose, 'left', 'knee')\n",
    "        left_ankle = get_coordinates(landmarks, mp_pose, 'left', 'ankle')\n",
    "        # right side\n",
    "        right_shoulder = get_coordinates(landmarks, mp_pose, 'right', 'shoulder')\n",
    "        right_hip = get_coordinates(landmarks, mp_pose, 'right', 'hip')\n",
    "        right_knee = get_coordinates(landmarks, mp_pose, 'right', 'knee')\n",
    "        right_ankle = get_coordinates(landmarks, mp_pose, 'right', 'ankle')\n",
    "        \n",
    "        # Calculate knee angles\n",
    "        left_knee_angle = calculate_angle(left_hip, left_knee, left_ankle)\n",
    "        right_knee_angle = calculate_angle(right_hip, right_knee, right_ankle)\n",
    "        \n",
    "        # Calculate hip angles\n",
    "        left_hip_angle = calculate_angle(left_shoulder, left_hip, left_knee)\n",
    "        right_hip_angle = calculate_angle(right_shoulder, right_hip, right_knee)\n",
    "        \n",
    "        # Squat counter logic\n",
    "        thr = 165\n",
    "        if (left_knee_angle < thr) and (right_knee_angle < thr) and (left_hip_angle < thr) and (right_hip_angle < thr):\n",
    "            squat_stage = \"down\"\n",
    "        if (left_knee_angle > thr) and (right_knee_angle > thr) and (left_hip_angle > thr) and (right_hip_angle > thr) and (squat_stage =='down'):\n",
    "            squat_stage='up'\n",
    "            squat_counter += 1\n",
    "        curl_stage = None\n",
    "        press_stage = None\n",
    "            \n",
    "        # Viz joint angles\n",
    "        viz_joint_angle(image, left_knee_angle, left_knee)\n",
    "        viz_joint_angle(image, left_hip_angle, left_hip)\n",
    "        \n",
    "    else:\n",
    "        pass"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a5116ef6",
   "metadata": {},
   "source": [
    "# 12. Test in Real Time"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "id": "4775b75e",
   "metadata": {},
   "outputs": [],
   "source": [
    "def prob_viz(res, actions, input_frame, colors):\n",
    "    \"\"\"\n",
    "    This function displays the model prediction probability distribution over the set of exercise classes\n",
    "    as a horizontal bar graph\n",
    "    \n",
    "    \"\"\"\n",
    "    output_frame = input_frame.copy()\n",
    "    for num, prob in enumerate(res):        \n",
    "        cv2.rectangle(output_frame, (0,60+num*40), (int(prob*100), 90+num*40), colors[num], -1)\n",
    "        cv2.putText(output_frame, actions[num], (0, 85+num*40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.LINE_AA)\n",
    "        \n",
    "    return output_frame"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "id": "6332bf1a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. New detection variables\n",
    "sequence = []\n",
    "predictions = []\n",
    "res = []\n",
    "threshold = 0.5 # minimum confidence to classify as an action/exercise\n",
    "current_action = ''\n",
    "\n",
    "# Rep counter logic variables\n",
    "curl_counter = 0\n",
    "press_counter = 0\n",
    "squat_counter = 0\n",
    "curl_stage = None\n",
    "press_stage = None\n",
    "squat_stage = None\n",
    "\n",
    "# Camera object\n",
    "cap = cv2.VideoCapture(0)\n",
    "\n",
    "# Video writer object that saves a video of the real time test\n",
    "fourcc = cv2.VideoWriter_fourcc('M','J','P','G') # video compression format\n",
    "HEIGHT = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # webcam video frame height\n",
    "WIDTH = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # webcam video frame width\n",
    "FPS = int(cap.get(cv2.CAP_PROP_FPS)) # webcam video fram rate \n",
    "\n",
    "video_name = os.path.join(os.getcwd(),f\"{model_name}_real_time_test.avi\")\n",
    "out = cv2.VideoWriter(video_name, cv2.VideoWriter_fourcc(*\"MJPG\"), FPS, (WIDTH,HEIGHT))\n",
    "\n",
    "# Set mediapipe model \n",
    "with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:\n",
    "    while cap.isOpened():\n",
    "\n",
    "        # Read feed\n",
    "        ret, frame = cap.read()\n",
    "\n",
    "        # Make detection\n",
    "        image, results = mediapipe_detection(frame, pose)\n",
    "        \n",
    "        # Draw landmarks\n",
    "        draw_landmarks(image, results)\n",
    "        \n",
    "        # 2. Prediction logic\n",
    "        keypoints = extract_keypoints(results)        \n",
    "        sequence.append(keypoints)      \n",
    "        sequence = sequence[-sequence_length:]\n",
    "              \n",
    "        if len(sequence) == sequence_length:\n",
    "            res = model.predict(np.expand_dims(sequence, axis=0), verbose=0)[0]           \n",
    "            predictions.append(np.argmax(res))\n",
    "            current_action = actions[np.argmax(res)]\n",
    "            confidence = np.max(res)\n",
    "            \n",
    "        #3. Viz logic\n",
    "            # Erase current action variable if no probability is above threshold\n",
    "            if confidence < threshold:\n",
    "                current_action = ''\n",
    "\n",
    "            # Viz probabilities\n",
    "            image = prob_viz(res, actions, image, colors)\n",
    "            \n",
    "            # Count reps\n",
    "            try:\n",
    "                landmarks = results.pose_landmarks.landmark\n",
    "                count_reps(\n",
    "                    image, current_action, landmarks, mp_pose)\n",
    "            except:\n",
    "                pass\n",
    "\n",
    "            # Display graphical information\n",
    "            cv2.rectangle(image, (0,0), (640, 40), colors[np.argmax(res)], -1)\n",
    "            cv2.putText(image, 'curl ' + str(curl_counter), (3,30), \n",
    "                           cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)\n",
    "            cv2.putText(image, 'press ' + str(press_counter), (240,30), \n",
    "                           cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)\n",
    "            cv2.putText(image, 'squat ' + str(squat_counter), (490,30), \n",
    "                           cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)\n",
    "         \n",
    "        # Show to screen\n",
    "        cv2.imshow('OpenCV Feed', image)\n",
    "        \n",
    "        # Write to video file\n",
    "        if ret == True:\n",
    "            out.write(image)\n",
    "\n",
    "        # Break gracefully\n",
    "        if cv2.waitKey(10) & 0xFF == ord('q'):\n",
    "            break\n",
    "    cap.release()\n",
    "    out.release()\n",
    "    cv2.destroyAllWindows()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "id": "af9980a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "cap.release()\n",
    "out.release()\n",
    "cv2.destroyAllWindows()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.8.13 ('AItrainer')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.13"
  },
  "vscode": {
   "interpreter": {
    "hash": "80aa1d3f3a8cfb37a38c47373cc49a39149184c5fa770d709389b1b8782c1d85"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}