Spaces:
Configuration error
Configuration error
import mediapipe as mp | |
import cv2 | |
import numpy as np | |
import pandas as pd | |
import pickle | |
import traceback | |
from .utils import ( | |
calculate_angle, | |
extract_important_keypoints, | |
get_static_file_url, | |
get_drawing_color, | |
) | |
mp_drawing = mp.solutions.drawing_utils | |
mp_pose = mp.solutions.pose | |
class BicepPoseAnalysis: | |
def __init__( | |
self, | |
side: str, | |
stage_down_threshold: float, | |
stage_up_threshold: float, | |
peak_contraction_threshold: float, | |
loose_upper_arm_angle_threshold: float, | |
visibility_threshold: float, | |
): | |
# Initialize thresholds | |
self.stage_down_threshold = stage_down_threshold | |
self.stage_up_threshold = stage_up_threshold | |
self.peak_contraction_threshold = peak_contraction_threshold | |
self.loose_upper_arm_angle_threshold = loose_upper_arm_angle_threshold | |
self.visibility_threshold = visibility_threshold | |
self.side = side | |
self.counter = 0 | |
self.stage = "down" | |
self.is_visible = True | |
self.detected_errors = { | |
"LOOSE_UPPER_ARM": 0, | |
"PEAK_CONTRACTION": 0, | |
} | |
# Params for loose upper arm error detection | |
self.loose_upper_arm = False | |
# Params for peak contraction error detection | |
self.peak_contraction_angle = 1000 | |
def get_joints(self, landmarks) -> bool: | |
""" | |
Check for joints' visibility then get joints coordinate | |
""" | |
side = self.side.upper() | |
# Check visibility | |
joints_visibility = [ | |
landmarks[mp_pose.PoseLandmark[f"{side}_SHOULDER"].value].visibility, | |
landmarks[mp_pose.PoseLandmark[f"{side}_ELBOW"].value].visibility, | |
landmarks[mp_pose.PoseLandmark[f"{side}_WRIST"].value].visibility, | |
] | |
is_visible = all([vis > self.visibility_threshold for vis in joints_visibility]) | |
self.is_visible = is_visible | |
if not is_visible: | |
return self.is_visible | |
# Get joints' coordinates | |
self.shoulder = [ | |
landmarks[mp_pose.PoseLandmark[f"{side}_SHOULDER"].value].x, | |
landmarks[mp_pose.PoseLandmark[f"{side}_SHOULDER"].value].y, | |
] | |
self.elbow = [ | |
landmarks[mp_pose.PoseLandmark[f"{side}_ELBOW"].value].x, | |
landmarks[mp_pose.PoseLandmark[f"{side}_ELBOW"].value].y, | |
] | |
self.wrist = [ | |
landmarks[mp_pose.PoseLandmark[f"{side}_WRIST"].value].x, | |
landmarks[mp_pose.PoseLandmark[f"{side}_WRIST"].value].y, | |
] | |
return self.is_visible | |
def analyze_pose( | |
self, | |
landmarks, | |
frame, | |
results, | |
timestamp: int, | |
lean_back_error: bool = False, | |
): | |
"""Analyze angles of an arm for error detection | |
Args: | |
landmarks (): MediaPipe Pose landmarks | |
frame (): OpenCV frame | |
results (): MediaPipe Pose results | |
timestamp (int): timestamp of the frame | |
lean_back_error (bool, optional): If there is an lean back error detected, ignore the analysis. Defaults to False. | |
Returns: | |
_type_: _description_ | |
""" | |
has_error = False | |
self.get_joints(landmarks) | |
# Cancel calculation if visibility is poor | |
if not self.is_visible: | |
return (None, None, has_error) | |
# * Calculate curl angle for counter | |
bicep_curl_angle = int(calculate_angle(self.shoulder, self.elbow, self.wrist)) | |
if bicep_curl_angle > self.stage_down_threshold: | |
self.stage = "down" | |
elif bicep_curl_angle < self.stage_up_threshold and self.stage == "down": | |
self.stage = "up" | |
self.counter += 1 | |
# * Calculate the angle between the upper arm (shoulder & joint) and the Y axis | |
shoulder_projection = [ | |
self.shoulder[0], | |
1, | |
] # Represent the projection of the shoulder to the X axis | |
ground_upper_arm_angle = int( | |
calculate_angle(self.elbow, self.shoulder, shoulder_projection) | |
) | |
# Stop analysis if lean back error is occur | |
if lean_back_error: | |
return (bicep_curl_angle, ground_upper_arm_angle, has_error) | |
# * Evaluation for LOOSE UPPER ARM error | |
if ground_upper_arm_angle > self.loose_upper_arm_angle_threshold: | |
has_error = True | |
cv2.rectangle(frame, (350, 0), (600, 40), (245, 117, 16), -1) | |
cv2.putText( | |
frame, | |
"ARM ERROR", | |
(360, 12), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(0, 0, 0), | |
1, | |
cv2.LINE_AA, | |
) | |
cv2.putText( | |
frame, | |
"LOOSE UPPER ARM", | |
(355, 30), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(255, 255, 255), | |
1, | |
cv2.LINE_AA, | |
) | |
# Limit the saved frame | |
if not self.loose_upper_arm: | |
self.loose_upper_arm = True | |
self.detected_errors["LOOSE_UPPER_ARM"] += 1 | |
results.append( | |
{"stage": "loose upper arm", "frame": frame, "timestamp": timestamp} | |
) | |
else: | |
self.loose_upper_arm = False | |
# * Evaluate PEAK CONTRACTION error | |
if self.stage == "up" and bicep_curl_angle < self.peak_contraction_angle: | |
# Save peaked contraction every rep | |
self.peak_contraction_angle = bicep_curl_angle | |
elif self.stage == "down": | |
# * Evaluate if the peak is higher than the threshold if True, marked as an error then saved that frame | |
if ( | |
self.peak_contraction_angle != 1000 | |
and self.peak_contraction_angle >= self.peak_contraction_threshold | |
): | |
cv2.rectangle(frame, (350, 0), (600, 40), (245, 117, 16), -1) | |
cv2.putText( | |
frame, | |
"ARM ERROR", | |
(360, 12), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(0, 0, 0), | |
1, | |
cv2.LINE_AA, | |
) | |
cv2.putText( | |
frame, | |
"WEAK PEAK CONTRACTION", | |
(355, 30), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(255, 255, 255), | |
1, | |
cv2.LINE_AA, | |
) | |
self.detected_errors["PEAK_CONTRACTION"] += 1 | |
results.append( | |
{ | |
"stage": "peak contraction", | |
"frame": frame, | |
"timestamp": timestamp, | |
} | |
) | |
has_error = True | |
# Reset params | |
self.peak_contraction_angle = 1000 | |
return (bicep_curl_angle, ground_upper_arm_angle, has_error) | |
def get_counter(self) -> int: | |
return self.counter | |
def reset(self): | |
self.counter = 0 | |
self.stage = "down" | |
self.is_visible = True | |
self.detected_errors = { | |
"LOOSE_UPPER_ARM": 0, | |
"PEAK_CONTRACTION": 0, | |
} | |
# Params for loose upper arm error detection | |
self.loose_upper_arm = False | |
# Params for peak contraction error detection | |
self.peak_contraction_angle = 1000 | |
class BicepCurlDetection: | |
ML_MODEL_PATH = get_static_file_url("model/bicep_curl_model.pkl") | |
INPUT_SCALER = get_static_file_url("model/bicep_curl_input_scaler.pkl") | |
VISIBILITY_THRESHOLD = 0.65 | |
# Params for counter | |
STAGE_UP_THRESHOLD = 100 | |
STAGE_DOWN_THRESHOLD = 120 | |
# Params to catch FULL RANGE OF MOTION error | |
PEAK_CONTRACTION_THRESHOLD = 60 | |
# LOOSE UPPER ARM error detection | |
LOOSE_UPPER_ARM = False | |
LOOSE_UPPER_ARM_ANGLE_THRESHOLD = 40 | |
# STANDING POSTURE error detection | |
POSTURE_ERROR_THRESHOLD = 0.95 | |
def __init__(self) -> None: | |
self.init_important_landmarks() | |
self.load_machine_learning_model() | |
self.left_arm_analysis = BicepPoseAnalysis( | |
side="left", | |
stage_down_threshold=self.STAGE_DOWN_THRESHOLD, | |
stage_up_threshold=self.STAGE_UP_THRESHOLD, | |
peak_contraction_threshold=self.PEAK_CONTRACTION_THRESHOLD, | |
loose_upper_arm_angle_threshold=self.LOOSE_UPPER_ARM_ANGLE_THRESHOLD, | |
visibility_threshold=self.VISIBILITY_THRESHOLD, | |
) | |
self.right_arm_analysis = BicepPoseAnalysis( | |
side="right", | |
stage_down_threshold=self.STAGE_DOWN_THRESHOLD, | |
stage_up_threshold=self.STAGE_UP_THRESHOLD, | |
peak_contraction_threshold=self.PEAK_CONTRACTION_THRESHOLD, | |
loose_upper_arm_angle_threshold=self.LOOSE_UPPER_ARM_ANGLE_THRESHOLD, | |
visibility_threshold=self.VISIBILITY_THRESHOLD, | |
) | |
self.stand_posture = 0 | |
self.previous_stand_posture = 0 | |
self.results = [] | |
self.has_error = False | |
def init_important_landmarks(self) -> None: | |
""" | |
Determine Important landmarks for plank detection | |
""" | |
self.important_landmarks = [ | |
"NOSE", | |
"LEFT_SHOULDER", | |
"RIGHT_SHOULDER", | |
"RIGHT_ELBOW", | |
"LEFT_ELBOW", | |
"RIGHT_WRIST", | |
"LEFT_WRIST", | |
"LEFT_HIP", | |
"RIGHT_HIP", | |
] | |
# Generate all columns of the data frame | |
self.headers = ["label"] # Label column | |
for lm in self.important_landmarks: | |
self.headers += [ | |
f"{lm.lower()}_x", | |
f"{lm.lower()}_y", | |
f"{lm.lower()}_z", | |
f"{lm.lower()}_v", | |
] | |
def load_machine_learning_model(self) -> None: | |
""" | |
Load machine learning model | |
""" | |
if not self.ML_MODEL_PATH: | |
raise Exception("Cannot found plank model") | |
try: | |
with open(self.ML_MODEL_PATH, "rb") as f: | |
self.model = pickle.load(f) | |
with open(self.INPUT_SCALER, "rb") as f2: | |
self.input_scaler = pickle.load(f2) | |
except Exception as e: | |
raise Exception(f"Error loading model, {e}") | |
def handle_detected_results(self, video_name: str) -> tuple: | |
""" | |
Save frame as evidence | |
""" | |
file_name, _ = video_name.split(".") | |
save_folder = get_static_file_url("images") | |
for index, error in enumerate(self.results): | |
try: | |
image_name = f"{file_name}_{index}.jpg" | |
cv2.imwrite(f"{save_folder}/{file_name}_{index}.jpg", error["frame"]) | |
self.results[index]["frame"] = image_name | |
except Exception as e: | |
print("ERROR cannot save frame: " + str(e)) | |
self.results[index]["frame"] = None | |
return self.results, { | |
"left_counter": self.left_arm_analysis.get_counter(), | |
"right_counter": self.right_arm_analysis.get_counter(), | |
} | |
def clear_results(self) -> None: | |
self.stand_posture = 0 | |
self.previous_stand_posture = 0 | |
self.results = [] | |
self.has_error = False | |
self.right_arm_analysis.reset() | |
self.left_arm_analysis.reset() | |
def detect( | |
self, | |
mp_results, | |
image, | |
timestamp: int, | |
) -> None: | |
"""Error detection | |
Args: | |
mp_results (): MediaPipe results | |
image (): OpenCV image | |
timestamp (int): Current time of the frame | |
""" | |
self.has_error = False | |
try: | |
video_dimensions = [image.shape[1], image.shape[0]] | |
landmarks = mp_results.pose_landmarks.landmark | |
# * Model prediction for Lean-back error | |
# Extract keypoints from frame for the input | |
row = extract_important_keypoints(mp_results, self.important_landmarks) | |
X = pd.DataFrame( | |
[ | |
row, | |
], | |
columns=self.headers[1:], | |
) | |
X = pd.DataFrame(self.input_scaler.transform(X)) | |
# Make prediction and its probability | |
predicted_class = self.model.predict(X)[0] | |
prediction_probabilities = self.model.predict_proba(X)[0] | |
class_prediction_probability = round( | |
prediction_probabilities[np.argmax(prediction_probabilities)], 2 | |
) | |
if class_prediction_probability >= self.POSTURE_ERROR_THRESHOLD: | |
self.stand_posture = predicted_class | |
# Stage management for saving results | |
if self.stand_posture == "L": | |
if self.previous_stand_posture == self.stand_posture: | |
pass | |
elif self.previous_stand_posture != self.stand_posture: | |
self.results.append( | |
{ | |
"stage": "lean too far back", | |
"frame": image, | |
"timestamp": timestamp, | |
} | |
) | |
self.has_error = True | |
self.previous_stand_posture = self.stand_posture | |
# * Arms analysis for errors | |
# Left arm | |
( | |
left_bicep_curl_angle, | |
left_ground_upper_arm_angle, | |
left_arm_error, | |
) = self.left_arm_analysis.analyze_pose( | |
landmarks=landmarks, | |
frame=image, | |
results=self.results, | |
timestamp=timestamp, | |
lean_back_error=(self.stand_posture == "L"), | |
) | |
# Right arm | |
( | |
right_bicep_curl_angle, | |
right_ground_upper_arm_angle, | |
right_arm_error, | |
) = self.right_arm_analysis.analyze_pose( | |
landmarks=landmarks, | |
frame=image, | |
results=self.results, | |
timestamp=timestamp, | |
lean_back_error=(self.stand_posture == "L"), | |
) | |
self.has_error = ( | |
True if (right_arm_error or left_arm_error) else self.has_error | |
) | |
# Visualization | |
# Draw landmarks and connections | |
landmark_color, connection_color = get_drawing_color(self.has_error) | |
mp_drawing.draw_landmarks( | |
image, | |
mp_results.pose_landmarks, | |
mp_pose.POSE_CONNECTIONS, | |
mp_drawing.DrawingSpec( | |
color=landmark_color, thickness=2, circle_radius=2 | |
), | |
mp_drawing.DrawingSpec( | |
color=connection_color, thickness=2, circle_radius=1 | |
), | |
) | |
# Status box | |
cv2.rectangle(image, (0, 0), (350, 40), (245, 117, 16), -1) | |
# Display probability | |
cv2.putText( | |
image, | |
"RIGHT", | |
(15, 12), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(0, 0, 0), | |
1, | |
cv2.LINE_AA, | |
) | |
cv2.putText( | |
image, | |
str(self.right_arm_analysis.counter) | |
if self.right_arm_analysis.is_visible | |
else "UNK", | |
(10, 30), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(255, 255, 255), | |
1, | |
cv2.LINE_AA, | |
) | |
# Display Left Counter | |
cv2.putText( | |
image, | |
"LEFT", | |
(95, 12), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(0, 0, 0), | |
1, | |
cv2.LINE_AA, | |
) | |
cv2.putText( | |
image, | |
str(self.left_arm_analysis.counter) | |
if self.left_arm_analysis.is_visible | |
else "UNK", | |
(100, 30), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(255, 255, 255), | |
1, | |
cv2.LINE_AA, | |
) | |
# Lean back error | |
cv2.putText( | |
image, | |
"Lean-Too-Far-Back", | |
(165, 12), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(0, 0, 0), | |
1, | |
cv2.LINE_AA, | |
) | |
cv2.putText( | |
image, | |
str("ERROR" if self.stand_posture == "L" else "CORRECT") | |
+ f", {predicted_class}, {class_prediction_probability}", | |
(160, 30), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(255, 255, 255), | |
1, | |
cv2.LINE_AA, | |
) | |
# * Visualize angles | |
# Visualize LEFT arm calculated angles | |
if self.left_arm_analysis.is_visible: | |
cv2.putText( | |
image, | |
str(left_bicep_curl_angle), | |
tuple( | |
np.multiply( | |
self.left_arm_analysis.elbow, video_dimensions | |
).astype(int) | |
), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(255, 255, 255), | |
1, | |
cv2.LINE_AA, | |
) | |
cv2.putText( | |
image, | |
str(left_ground_upper_arm_angle), | |
tuple( | |
np.multiply( | |
self.left_arm_analysis.shoulder, video_dimensions | |
).astype(int) | |
), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(255, 255, 255), | |
1, | |
cv2.LINE_AA, | |
) | |
# Visualize RIGHT arm calculated angles | |
if self.right_arm_analysis.is_visible: | |
cv2.putText( | |
image, | |
str(right_bicep_curl_angle), | |
tuple( | |
np.multiply( | |
self.right_arm_analysis.elbow, video_dimensions | |
).astype(int) | |
), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(255, 255, 0), | |
1, | |
cv2.LINE_AA, | |
) | |
cv2.putText( | |
image, | |
str(right_ground_upper_arm_angle), | |
tuple( | |
np.multiply( | |
self.right_arm_analysis.shoulder, video_dimensions | |
).astype(int) | |
), | |
cv2.FONT_HERSHEY_COMPLEX, | |
0.5, | |
(255, 255, 0), | |
1, | |
cv2.LINE_AA, | |
) | |
except Exception as e: | |
traceback.print_exc() | |
raise e | |