Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,15 +15,8 @@ model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
|
15 |
model_name, device_map=device, torch_dtype=torch.bfloat16
|
16 |
)
|
17 |
|
18 |
-
today_str = date.today().strftime("%B %d, %Y")
|
19 |
|
20 |
-
|
21 |
-
"Knowledge Cutoff Date: April 2024.\n"
|
22 |
-
f"Today's Date: {today_str}.\n"
|
23 |
-
"You are Granite, developed by IBM. You are a helpful AI assistant."
|
24 |
-
)
|
25 |
-
|
26 |
-
def transcribe(audio_file):
|
27 |
# load wav file
|
28 |
wav, sr = torchaudio.load(audio_file, normalize=True)
|
29 |
if wav.shape[0] != 1 or sr != 16000:
|
@@ -32,20 +25,31 @@ def transcribe(audio_file):
|
|
32 |
wav = torchaudio.functional.resample(wav, sr, 16000)
|
33 |
sr = 16000
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
chat = [
|
38 |
dict(role="system", content=system_prompt),
|
39 |
-
dict(role="user", content=user_prompt),
|
40 |
]
|
41 |
-
prompt = tokenizer.apply_chat_template(
|
|
|
42 |
|
43 |
# run model
|
44 |
-
model_inputs = processor(
|
|
|
|
|
|
|
|
|
45 |
model_outputs = model.generate(
|
46 |
-
**model_inputs,
|
47 |
-
max_new_tokens=
|
48 |
-
do_sample=False,
|
49 |
num_beams=1
|
50 |
)
|
51 |
|
@@ -58,15 +62,32 @@ def transcribe(audio_file):
|
|
58 |
|
59 |
return output_text[0].strip()
|
60 |
|
|
|
61 |
# Gradio UI
|
62 |
with gr.Blocks() as demo:
|
63 |
-
gr.Markdown("## Granite 3.3 Speech-to-Text
|
|
|
|
|
|
|
|
|
64 |
|
65 |
with gr.Row():
|
66 |
-
audio_input = gr.Audio(type="filepath",
|
|
|
67 |
output_text = gr.Textbox(label="Transcription", lines=5)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
transcribe_btn = gr.Button("Transcribe")
|
70 |
-
transcribe_btn.click(
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
15 |
model_name, device_map=device, torch_dtype=torch.bfloat16
|
16 |
)
|
17 |
|
|
|
18 |
|
19 |
+
def transcribe(audio_file, user_prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# load wav file
|
21 |
wav, sr = torchaudio.load(audio_file, normalize=True)
|
22 |
if wav.shape[0] != 1 or sr != 16000:
|
|
|
25 |
wav = torchaudio.functional.resample(wav, sr, 16000)
|
26 |
sr = 16000
|
27 |
|
28 |
+
today_str = date.today().strftime("%B %d, %Y")
|
29 |
+
|
30 |
+
system_prompt = (
|
31 |
+
"Knowledge Cutoff Date: April 2024.\n"
|
32 |
+
f"Today's Date: {today_str}.\n"
|
33 |
+
"You are Granite, developed by IBM. You are a helpful AI assistant."
|
34 |
+
)
|
35 |
+
|
36 |
chat = [
|
37 |
dict(role="system", content=system_prompt),
|
38 |
+
dict(role="user", content=f"<|audio|>{user_prompt}"),
|
39 |
]
|
40 |
+
prompt = tokenizer.apply_chat_template(
|
41 |
+
chat, tokenize=False, add_generation_prompt=True)
|
42 |
|
43 |
# run model
|
44 |
+
model_inputs = processor(
|
45 |
+
prompt,
|
46 |
+
wav,
|
47 |
+
device=device,
|
48 |
+
return_tensors="pt").to(device)
|
49 |
model_outputs = model.generate(
|
50 |
+
**model_inputs,
|
51 |
+
max_new_tokens=512,
|
52 |
+
do_sample=False,
|
53 |
num_beams=1
|
54 |
)
|
55 |
|
|
|
62 |
|
63 |
return output_text[0].strip()
|
64 |
|
65 |
+
|
66 |
# Gradio UI
|
67 |
with gr.Blocks() as demo:
|
68 |
+
gr.Markdown("## Granite 3.3 Speech-to-Text")
|
69 |
+
gr.Markdown(
|
70 |
+
"Upload an audio file and Granite Speech 3.3 8b will transcribe it into text."
|
71 |
+
"You can also edit the prompt below to customize what Granite should do with the audio, like translation."
|
72 |
+
)
|
73 |
|
74 |
with gr.Row():
|
75 |
+
audio_input = gr.Audio(type="filepath",
|
76 |
+
label="Upload Audio (16kHz mono preferred)")
|
77 |
output_text = gr.Textbox(label="Transcription", lines=5)
|
78 |
|
79 |
+
user_prompt = gr.Textbox(
|
80 |
+
label="User Prompt",
|
81 |
+
value="Can you transcribe the speech into a written format?",
|
82 |
+
lines=2
|
83 |
+
)
|
84 |
+
|
85 |
transcribe_btn = gr.Button("Transcribe")
|
86 |
+
transcribe_btn.click(
|
87 |
+
fn=transcribe,
|
88 |
+
inputs=[
|
89 |
+
audio_input,
|
90 |
+
user_prompt],
|
91 |
+
outputs=output_text)
|
92 |
|
93 |
+
demo.launch()
|