File size: 4,713 Bytes
9bcb7ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5556d7a
9bcb7ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5556d7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import streamlit as st
from huggingface_hub import InferenceClient
from gradio_client import Client
import re

# Set the page config
st.set_page_config(layout="wide")

# Load custom CSS
with open('style.css') as f:
    st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)

# Initialize the HuggingFace Inference Client
text_client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.1")
image_client = Client("phenixrhyder/nsfw-waifu-gradio")

def format_prompt_for_description(caption_text):
    prompt = f"Generate a funny and relatable meme caption for Pepe the Frog: {caption_text}"
    return prompt

def format_prompt_for_image(caption_text):
    prompt = f"Generate an image prompt for a Pepe the Frog meme with the following caption: {caption_text}"
    return prompt

def clean_generated_text(text):
    # Remove any unwanted trailing tags or characters like </s>
    clean_text = re.sub(r'</s>$', '', text).strip()
    return clean_text

def generate_text(prompt, temperature=0.9, max_new_tokens=512, top_p=0.95, repetition_penalty=1.0):
    temperature = max(temperature, 1e-2)
    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    try:
        stream = text_client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream:
            output += response.token.text
        return clean_generated_text(output)
    except Exception as e:
        st.error(f"Error generating text: {e}")
        return ""

# Updated part for the new API
def generate_image(prompt):
    try:
        result = image_client.predict(
            param_0=prompt,
            api_name="/predict"
        )
        # Process and display the result
        if result:
            return [result]  # Assuming the API returns a single image path as a result
        else:
            st.error("Unexpected result format from the Gradio API.")
            return None
    except Exception as e:
        st.error(f"Error generating image: {e}")
        st.write("Full error details:", e)
        return None

def main():
    st.title("Pepe Meme Generator")

    # User inputs
    col1, col2 = st.columns(2)
    with col1:
        caption_text = st.text_input("Enter a caption or meme idea for Pepe")

        # Advanced settings
        with st.expander("Advanced Settings"):
            temperature = st.slider("Temperature", 0.0, 1.0, 0.9, step=0.05)
            max_new_tokens = st.slider("Max new tokens", 0, 8192, 512, step=64)
            top_p = st.slider("Top-p (nucleus sampling)", 0.0, 1.0, 0.95, step=0.05)
            repetition_penalty = st.slider("Repetition penalty", 1.0, 2.0, 1.0, step=0.05)

        # Initialize session state for generated text and image prompt
        if "meme_caption" not in st.session_state:
            st.session_state.meme_caption = ""
        if "image_prompt" not in st.session_state:
            st.session_state.image_prompt = ""
        if "image_paths" not in st.session_state:
            st.session_state.image_paths = []

        # Generate button
        if st.button("Generate Pepe Meme"):
            with st.spinner("Generating Pepe meme..."):
                description_prompt = format_prompt_for_description(caption_text)
                image_prompt = format_prompt_for_image(caption_text)

                # Generate meme caption
                st.session_state.meme_caption = generate_text(description_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
                
                # Generate image prompt
                st.session_state.image_prompt = generate_text(image_prompt, temperature, max_new_tokens, top_p, repetition_penalty)
                
                # Generate image from image prompt
                st.session_state.image_paths = generate_image(st.session_state.image_prompt)
                
                st.success("Pepe meme generated!")

    with col2:
        # Display the generated meme caption and image prompt
        if st.session_state.meme_caption:
            st.subheader("Generated Meme Caption")
            st.write(st.session_state.meme_caption)
        if st.session_state.image_prompt:
            st.subheader("Image Prompt")
            st.write(st.session_state.image_prompt)
        if st.session_state.image_paths:
            st.subheader("Generated Image")
            for image_path in st.session_state.image_paths:
                st.image(image_path, caption="Generated Pepe Meme Image")

if __name__ == "__main__":
    main()