File size: 20,571 Bytes
bdb955e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import torch
import torch.nn as nn
from functools import partial

from pathlib import Path
from typing import Any, Dict, Tuple
# Imports depuis le package common (supposé être au même niveau que tvcalib)
from common.infer.base import *
# from common.registry import Registry  # Toujours commenté car source inconnue
# from common.utils import to_cuda      # Toujours commenté car source inconnue
# import project as p                  # Supprimé car probablement lié au projet complet

import torchvision.transforms as T
# Imports relatifs à l'intérieur de tvcalib (restent relatifs)
from ..sn_segmentation.src.custom_extremities import (
    generate_class_synthesis, get_line_extremities
)
from ..models.segmentation import InferenceSegmentationModel
from ..data.dataset import InferenceDatasetCalibration
from ..data.utils import custom_list_collate
from ..cam_modules import CameraParameterWLensDistDictZScore, SNProjectiveCamera
from ..utils.linalg import distance_line_pointcloud_3d, distance_point_pointcloud
from ..utils.objects_3d import SoccerPitchLineCircleSegments, SoccerPitchSNCircleCentralSplit
from ..cam_distr.tv_main_center import get_cam_distr, get_dist_distr
from ..utils.io import detach_dict, tensor2list
# Import depuis le package common
from common.data.utils import yards

from kornia.geometry.conversions import convert_points_to_homogeneous
from tqdm.auto import tqdm

# Commenté car lié à la méthode 'robust' et peut introduire des dépendances
# from methods.robust.loggers.preview import RobustPreviewLogger 

import numpy as np



class TvCalibInferModule(InferModule):
    def __init__(
        self,
        segmentation_checkpoint: Path,
        image_shape=(720,1280),
        optim_steps=2000,
        lens_dist: bool=False,
        playfield_size=(105, 68),
        make_images: bool=False

    ):
        self.image_shape = image_shape
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 
        self.make_images = make_images
        
        # We use the logger to draw visualizations
        # Commenté car la classe RobustPreviewLogger est commentée
        # self.previewer = RobustPreviewLogger(
        #     None, num_images=1
        # )
        
        self.fn_generate_class_synthesis = partial(
            generate_class_synthesis, 
            radius=4
        )
        self.fn_get_line_extremities = partial(
            get_line_extremities, 
            maxdist=30, 
            width=455, 
            height=256, 
            num_points_lines=4, 
            num_points_circles=8
        )
        
        # Segmentation model
        self.model_seg = InferenceSegmentationModel(
            segmentation_checkpoint,
            self.device
        )

        self.object3d = SoccerPitchLineCircleSegments(
            device=self.device, 
            base_field=SoccerPitchSNCircleCentralSplit()
        )
        self.object3dcpu = SoccerPitchLineCircleSegments(
            device="cpu", 
            base_field=SoccerPitchSNCircleCentralSplit()
        )

        # Calibration module 
        batch_size_calib = 1       
        self.model_calib = TVCalibModule(
            self.object3d,
            get_cam_distr(1.96, batch_size_calib, 1),
            get_dist_distr(batch_size_calib, 1) if lens_dist else None,
            (image_shape[0], image_shape[1]),
            optim_steps,
            self.device,
            log_per_step=False,
            tqdm_kwqargs=None,
        )
        self.resize = T.Compose([
            T.Resize(size=(256,455))
        ])
        self.offset = np.array([
            [1, 0, playfield_size[0]/2.0 ],
            [0, 1, playfield_size[1]/2.0 ],
            [0, 0, 1]
        ])

    
    
    def setup(self, datamodule: InferDataModule):
        pass
    
    
    def predict(self, x: Any) -> Dict:
        
        """
            1. Run segmentation & Pick keypoints
            2. Calibrate based on selected points
        """
        
        # Segment
        image = x["image"]        
        keypoints = self._segment(x["image"])
        
        # Calibrate
        homo = self._calibrate(keypoints)
        
        # Rescale to 720p
        image_720p = self.previewer.to_image(image.clone().detach().cpu())
        
         # Draw predicted playing field
        if (homo is not None):            
            # to yards
            # Commenté car previewer est commenté
            # to_yards = np.array([
            #     [ yards(1.0), 0, 0 ],
            #     [ 0, yards(1.0), 0 ],
            #     [ 0, 0, 1]
            # ])
            #homo = to_yards @ homo
                        
            # Commenté car previewer est commenté
            # try:
            #     inv_homo = np.linalg.inv(homo) @ self.previewer.scale
            #     image_720p = self.previewer.draw_playfield(
            #         image_720p, 
            #         self.previewer.image_playfield, 
            #         inv_homo,
            #         color=(255,0,0), alpha=1.0,
            #         flip=False
            #     )
            # except:
            #     # Homography might
            #     pass
            pass # Placeholder si l'homographie existe mais previewer est commenté
        
        result = {
            "homography": homo
        }
        
        if (self.make_images):
            # result["image_720p"] = image_720p # Commenté car image_720p n'est pas modifié sans previewer
            pass # Placeholder si make_images est True
        
        return result
    
    
    def _segment(self, image):
        
        # Image -> <1;3;256;455>
        image = self.resize(image)                
        with torch.no_grad():
            sem_lines = self.model_seg.inference(
                image.unsqueeze(0).to(self.device)
            )
        # <B;256;455>
        sem_lines = sem_lines.detach().cpu().numpy().astype(np.uint8)
            
        # Point selection
        skeletons_batch = self.fn_generate_class_synthesis(sem_lines[0])
        keypoints_raw_batch = self.fn_get_line_extremities(skeletons_batch)
        
        # Return the keypoints
        return keypoints_raw_batch
    
    
    def _calibrate(self, keypoints):
        
        # Just wrap around the keypoints
        ds = InferenceDatasetCalibration(
            [keypoints],
            self.image_shape[1], self.image_shape[0],
            self.object3d
        )
        
        # Get the first item and optimize it
        _batch_size = 1
        x_dict = custom_list_collate([ds[0]])
        try:
            # La gestion de previous_params est faite dans self_optim_batch
            per_sample_loss, cam, _ = self.model_calib.self_optim_batch(x_dict)
            output_dict = tensor2list(
                detach_dict({**cam.get_parameters(_batch_size), **per_sample_loss})
            )
            
            homo = output_dict["homography"][0]
            if (len(homo) > 0):
                homo = np.array(homo[0])

                to_yards = np.array([
                    [ yards(1), 0, 0 ],
                    [ 0, yards(1), 0 ],
                    [ 0, 0, 1]
                ])

                # Shift the homography by half the playing field
                homo = to_yards @ self.offset @ homo
                            
            else:
                homo = None
        except Exception as e:
            print(f"Erreur lors de la calibration: {str(e)}")
            homo = None
            
        return homo
    
    
    
    
    
    
    
class TVCalibModule(torch.nn.Module):
    def __init__(
        self,
        model3d,
        cam_distr,
        dist_distr,
        image_dim: Tuple[int, int],
        optim_steps: int,
        device="cpu",
        tqdm_kwqargs=None,
        log_per_step=False,
        *args,
        **kwargs,
    ) -> None:
        super().__init__(*args, **kwargs)
        self.image_height, self.image_width = image_dim
        self.principal_point = (self.image_width / 2, self.image_height / 2)
        self.model3d = model3d
        self.cam_param_dict = CameraParameterWLensDistDictZScore(
            cam_distr, dist_distr, device=device
        )

        self.lens_distortion_active = False if dist_distr is None else True
        self.optim_steps = optim_steps
        self._device = device

        # Ajouter l'attribut pour stocker les paramètres précédents
        self.previous_params = None

        self.optim = torch.optim.AdamW(
            self.cam_param_dict.param_dict.parameters(), lr=0.1, weight_decay=0.01
        )
        self.Scheduler = partial(
            torch.optim.lr_scheduler.OneCycleLR,
            max_lr=0.05,
            total_steps=self.optim_steps,
            pct_start=0.5,
        )

        if self.lens_distortion_active:
            self.optim_lens_distortion = torch.optim.AdamW(
                self.cam_param_dict.param_dict_dist.parameters(), lr=1e-3, weight_decay=0.01
            )
            self.Scheduler_lens_distortion = partial(
                torch.optim.lr_scheduler.OneCycleLR,
                max_lr=1e-3,
                total_steps=self.optim_steps,
                pct_start=0.33,
                optimizer=self.optim_lens_distortion,
            )

        self.tqdm_kwqargs = tqdm_kwqargs
        if tqdm_kwqargs is None:
            self.tqdm_kwqargs = {}

        self.hparams = {"optim": str(self.optim), "scheduler": str(self.Scheduler)}
        self.log_per_step = log_per_step

    def forward(self, x):

        # individual camera parameters & distortion parameters
        phi_hat, psi_hat = self.cam_param_dict()

        cam = SNProjectiveCamera(
            phi_hat,
            psi_hat,
            self.principal_point,
            self.image_width,
            self.image_height,
            device=self._device,
            nan_check=False,
        )

        # (batch_size, num_views_per_cam, 3, num_segments, num_points)
        points_px_lines_true = x["lines__ndc_projected_selection_shuffled"].to(self._device)
        batch_size, T_l, _, S_l, N_l = points_px_lines_true.shape

        # project circle points
        points_px_circles_true = x["circles__ndc_projected_selection_shuffled"].to(self._device)
        _, T_c, _, S_c, N_c = points_px_circles_true.shape
        assert T_c == T_l

        ####################  line-to-point distance at pixel space ####################
        # start and end point (in world coordinates) for each line segment
        points3d_lines_keypoints = self.model3d.line_segments  # (3, S_l, 2) to (S_l * 2, 3)
        points3d_lines_keypoints = points3d_lines_keypoints.reshape(3, S_l * 2).transpose(0, 1)
        points_px_lines_keypoints = convert_points_to_homogeneous(
            cam.project_point2ndc(points3d_lines_keypoints, lens_distortion=False)
        )  # (batch_size, t_l, S_l*2, 3)

        if batch_size < cam.batch_dim:  # actual batch_size smaller than expected, i.e. last batch
            points_px_lines_keypoints = points_px_lines_keypoints[:batch_size]

        points_px_lines_keypoints = points_px_lines_keypoints.view(batch_size, T_l, S_l, 2, 3)

        lp1 = points_px_lines_keypoints[..., 0, :].unsqueeze(-2)  # -> (batch_size, T_l, 1, S_l, 3)
        lp2 = points_px_lines_keypoints[..., 1, :].unsqueeze(-2)  # -> (batch_size, T_l, 1, S_l, 3)
        # (batch_size, T, 3, S, N) -> (batch_size, T, 3, S*N) -> (batch_size, T, S*N, 3) -> (batch_size, T, S, N, 3)
        pc = (
            points_px_lines_true.view(batch_size, T_l, 3, S_l * N_l)
            .transpose(2, 3)
            .view(batch_size, T_l, S_l, N_l, 3)
        )

        if self.lens_distortion_active:
            # undistort given points
            pc = pc.view(batch_size, T_l, S_l * N_l, 3)
            pc = pc.detach().clone()
            pc[..., :2] = cam.undistort_points(
                pc[..., :2], cam.intrinsics_ndc, num_iters=1
            )  # num_iters=1 might be enough for a good approximation
            pc = pc.view(batch_size, T_l, S_l, N_l, 3)

        distances_px_lines_raw = distance_line_pointcloud_3d(
            e1=lp2 - lp1, r1=lp1, pc=pc, reduce=None
        )  # (batch_size, T_l, S_l, N_l)
        distances_px_lines_raw = distances_px_lines_raw.unsqueeze(-3)
        # (..., 1, S_l, N_l,), i.e. (batch_size, T, 1, S_l, N_l)
        ####################  circle-to-point distance at pixel space ####################

        # circle segments are approximated as point clouds of size N_c_star
        points3d_circles_pc = self.model3d.circle_segments
        _, S_c, N_c_star = points3d_circles_pc.shape
        points3d_circles_pc = points3d_circles_pc.reshape(3, S_c * N_c_star).transpose(0, 1)
        points_px_circles_pc = cam.project_point2ndc(points3d_circles_pc, lens_distortion=False)

        if batch_size < cam.batch_dim:  # actual batch_size smaller than expected, i.e. last batch
            points_px_circles_pc = points_px_circles_pc[:batch_size]

        if self.lens_distortion_active:
            # (batch_size, T_c, _, S_c, N_c)
            points_px_circles_true = points_px_circles_true.view(
                batch_size, T_c, 3, S_c * N_c
            ).transpose(2, 3)
            points_px_circles_true = points_px_circles_true.detach().clone()
            points_px_circles_true[..., :2] = cam.undistort_points(
                points_px_circles_true[..., :2], cam.intrinsics_ndc, num_iters=1
            )
            points_px_circles_true = points_px_circles_true.transpose(2, 3).view(
                batch_size, T_c, 3, S_c, N_c
            )

        distances_px_circles_raw = distance_point_pointcloud(
            points_px_circles_true, points_px_circles_pc.view(batch_size, T_c, S_c, N_c_star, 2)
        )

        distances_dict = {
            "loss_ndc_lines": distances_px_lines_raw,  # (batch_size, T_l, 1, S_l, N_l)
            "loss_ndc_circles": distances_px_circles_raw,  # (batch_size, T_c, 1, S_c, N_c)
        }
        return distances_dict, cam

    def self_optim_batch(self, x, *args, **kwargs):

        scheduler = self.Scheduler(self.optim)  # re-initialize lr scheduler for every batch
        if self.lens_distortion_active:
            scheduler_lens_distortion = self.Scheduler_lens_distortion()

        # Initialiser avec les paramètres précédents si disponibles
        if self.previous_params is not None:
            print("Utilisation des paramètres précédents pour l'initialisation")
            update_dict = {}
            for k, v in self.previous_params.items():
                update_dict[k] = v.detach().clone()
            self.cam_param_dict.initialize(update_dict)
        else:
            print("Première frame : initialisation à zéro")
            self.cam_param_dict.initialize(None)

        self.optim.zero_grad()
        if self.lens_distortion_active:
            self.optim_lens_distortion.zero_grad()

        keypoint_masks = {
            "loss_ndc_lines": x["lines__is_keypoint_mask"].to(self._device),
            "loss_ndc_circles": x["circles__is_keypoint_mask"].to(self._device),
        }
        num_actual_points = {
            "loss_ndc_circles": keypoint_masks["loss_ndc_circles"].sum(dim=(-1, -2)),
            "loss_ndc_lines": keypoint_masks["loss_ndc_lines"].sum(dim=(-1, -2)),
        }

        per_sample_loss = {}
        per_sample_loss["mask_lines"] = keypoint_masks["loss_ndc_lines"]
        per_sample_loss["mask_circles"] = keypoint_masks["loss_ndc_circles"]

        per_step_info = {"loss": [], "lr": []}

        # Paramètres pour les critères d'arrêt
        loss_target = 0.001  # Réduit pour une meilleure précision potentielle
        loss_patience = 10  # Nombre d'itérations pour vérifier la stagnation
        loss_tolerance = 1e-4  # Tolérance pour la variation relative de loss
        loss_history = []  # Historique des valeurs de loss
        best_loss = float('inf')  # Meilleure loss obtenue
        steps_without_improvement = 0  # Compteur d'itérations sans amélioration

        # with torch.autograd.detect_anomaly():
        with tqdm(range(self.optim_steps), **self.tqdm_kwqargs) as pbar:
            for step in pbar:
                self.optim.zero_grad()
                if self.lens_distortion_active:
                    self.optim_lens_distortion.zero_grad()

                # forward pass
                distances_dict, cam = self(x)

                # distance calculate with masked input and output
                losses = {}
                for key_dist, distances in distances_dict.items():
                    distances[~keypoint_masks[key_dist]] = 0.0
                    per_sample_loss[f"{key_dist}_distances_raw"] = distances
                    distances_reduced = distances.sum(dim=(-1, -2))
                    distances_reduced = distances_reduced / num_actual_points[key_dist]
                    distances_reduced[num_actual_points[key_dist] == 0] = 0.0
                    distances_reduced = distances_reduced.squeeze(-1)
                    per_sample_loss[key_dist] = distances_reduced
                    loss = distances_reduced.mean(dim=-1)
                    loss = loss.sum()
                    losses[key_dist] = loss

                loss_total_dist = losses["loss_ndc_lines"] + losses["loss_ndc_circles"]
                loss_total = loss_total_dist
                current_loss = loss_total.item()

                # Mettre à jour l'historique des loss
                loss_history.append(current_loss)

                # Vérifier si on a une meilleure loss
                if current_loss < best_loss:
                    best_loss = current_loss
                    steps_without_improvement = 0
                else:
                    steps_without_improvement += 1

                # Critères d'arrêt (commentés pour forcer le nombre total d'étapes)
                # if len(loss_history) >= loss_patience:
                #     # Calculer la variation relative moyenne sur les dernières itérations
                #     recent_losses = loss_history[-loss_patience:]
                #     # Gérer le cas où toutes les pertes récentes sont nulles ou proches de zéro
                #     max_recent_loss = max(max(recent_losses), 1e-9) # Evite division par zéro
                #     loss_variation = abs(max(recent_losses) - min(recent_losses)) / max_recent_loss
                #     
                #     # Conditions d'arrêt
                #     if (current_loss <= loss_target or  # On a atteint la valeur cible
                #         loss_variation < loss_tolerance or  # La loss ne varie plus significativement
                #         steps_without_improvement >= loss_patience):  # Pas d'amélioration depuis un moment
                #         print(f"\nArrêt anticipé à l'itération {step+1}:")
                #         print(f"Loss finale: {current_loss:.5f}")
                #         print(f"Meilleure loss: {best_loss:.5f}")
                #         print(f"Variation relative: {loss_variation:.6f}")
                #         break

                if self.log_per_step:
                    per_step_info["lr"].append(scheduler.get_last_lr())
                    per_step_info["loss"].append(distances_reduced)
                if step % 50 == 0:
                    pbar.set_postfix(
                        loss=f"{loss_total_dist.detach().cpu().tolist():.5f}",
                        loss_lines=f'{losses["loss_ndc_lines"].detach().cpu().tolist():.3f}',
                        loss_circles=f'{losses["loss_ndc_circles"].detach().cpu().tolist():.3f}',
                    )

                loss_total.backward()
                self.optim.step()
                scheduler.step()
                if self.lens_distortion_active:
                    self.optim_lens_distortion.step()
                    scheduler_lens_distortion.step()

        # Sauvegarder les paramètres optimisés pour la prochaine frame
        self.previous_params = {}
        for k, v in self.cam_param_dict.param_dict.items():
            self.previous_params[k] = v.detach().clone()

        per_sample_loss["loss_ndc_total"] = torch.sum(
            torch.stack([per_sample_loss[key_dist] for key_dist in distances_dict.keys()], dim=0),
            dim=0,
        )

        if self.log_per_step:
            per_step_info["loss"] = torch.stack(
                per_step_info["loss"], dim=-1
            )
            per_step_info["lr"] = torch.tensor(per_step_info["lr"])
        return per_sample_loss, cam, per_step_info