File size: 7,582 Bytes
bdb955e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

from operator import itemgetter
import torch
import re
import collections


string_classes=str


def split_circle_central(keypoints_dict):
    # split "circle central" in  "circle central left" and "circle central right"

    # assume main camera --> TODO behind the goal camera
    if "Circle central" in keypoints_dict:
        points_circle_central_left = []
        points_circle_central_right = []

        if "Middle line" in keypoints_dict:
            p_index_ymin, _ = min(
                enumerate([p["y"] for p in keypoints_dict["Middle line"]]),
                key=itemgetter(1),
            )
            p_index_ymax, _ = max(
                enumerate([p["y"] for p in keypoints_dict["Middle line"]]),
                key=itemgetter(1),
            )
            p_ymin = keypoints_dict["Middle line"][p_index_ymin]
            p_ymax = keypoints_dict["Middle line"][p_index_ymax]
            p_xmean = (p_ymin["x"] + p_ymax["x"]) / 2

            points_circle_central = keypoints_dict["Circle central"]
            for p in points_circle_central:
                if p["x"] < p_xmean:
                    points_circle_central_left.append(p)
                else:
                    points_circle_central_right.append(p)
        else:
            # circle is partly shown on the left or right side of the image
            # mean position is shown on the left part of the image --> label right
            circle_x = [p["x"] for p in keypoints_dict["Circle central"]]
            mean_x_circle = sum(circle_x) / len(circle_x)
            if mean_x_circle < 0.5:
                points_circle_central_right = keypoints_dict["Circle central"]
            else:
                points_circle_central_left = keypoints_dict["Circle central"]

        if len(points_circle_central_left) > 0:
            keypoints_dict["Circle central left"] = points_circle_central_left
        if len(points_circle_central_right) > 0:
            keypoints_dict["Circle central right"] = points_circle_central_right
        if len(points_circle_central_left) == 0 and len(points_circle_central_right) == 0:
            raise RuntimeError
        del keypoints_dict["Circle central"]
    return keypoints_dict


def custom_list_collate(batch):
    r"""
    Function that takes in a batch of data and puts the elements within the batch
    into a tensor with an additional outer dimension - batch size. The exact output type can be
    a :class:`torch.Tensor`, a `Sequence` of :class:`torch.Tensor`, a
    Collection of :class:`torch.Tensor`, or left unchanged, depending on the input type.
    This is used as the default function for collation when
    `batch_size` or `batch_sampler` is defined in :class:`~torch.utils.data.DataLoader`.
    Here is the general input type (based on the type of the element within the batch) to output type mapping:
    * :class:`torch.Tensor` -> :class:`torch.Tensor` (with an added outer dimension batch size)
    * NumPy Arrays -> :class:`torch.Tensor`
    * `float` -> :class:`torch.Tensor`
    * `int` -> :class:`torch.Tensor`
    * `str` -> `str` (unchanged)
    * `bytes` -> `bytes` (unchanged)
    * `Mapping[K, V_i]` -> `Mapping[K, default_collate([V_1, V_2, ...])]`
    * `NamedTuple[V1_i, V2_i, ...]` -> `NamedTuple[default_collate([V1_1, V1_2, ...]), default_collate([V2_1, V2_2, ...]), ...]`
    * `Sequence[V1_i, V2_i, ...]` -> `Sequence[default_collate([V1_1, V1_2, ...]), default_collate([V2_1, V2_2, ...]), ...]`
    Args:
        batch: a single batch to be collated
    Examples:
        >>> # Example with a batch of `int`s:
        >>> default_collate([0, 1, 2, 3])
        tensor([0, 1, 2, 3])
        >>> # Example with a batch of `str`s:
        >>> default_collate(['a', 'b', 'c'])
        ['a', 'b', 'c']
        >>> # Example with `Map` inside the batch:
        >>> default_collate([{'A': 0, 'B': 1}, {'A': 100, 'B': 100}])
        {'A': tensor([  0, 100]), 'B': tensor([  1, 100])}
        >>> # Example with `NamedTuple` inside the batch:
        >>> Point = namedtuple('Point', ['x', 'y'])
        >>> default_collate([Point(0, 0), Point(1, 1)])
        Point(x=tensor([0, 1]), y=tensor([0, 1]))
        >>> # Example with `Tuple` inside the batch:
        >>> default_collate([(0, 1), (2, 3)])
        [tensor([0, 2]), tensor([1, 3])]

        >>> # modification
        >>> # Example with `List` inside the batch:
        >>> default_collate([[0, 1, 2], [2, 3, 4]])
        >>> [[0, 1, 2], [2, 3, 4]]
        >>> # original behavior
        >>> [[0, 2], [1, 3], [2, 4]]
    """

    np_str_obj_array_pattern = re.compile(r"[SaUO]")
    default_collate_err_msg_format = "default_collate: batch must contain tensors, numpy arrays, numbers, dicts or lists; found {}"

    elem = batch[0]
    elem_type = type(elem)
    if isinstance(elem, torch.Tensor):
        out = None
        if torch.utils.data.get_worker_info() is not None:
            # If we're in a background process, concatenate directly into a
            # shared memory tensor to avoid an extra copy
            numel = sum(x.numel() for x in batch)
            storage = elem.storage()._new_shared(numel)
            out = elem.new(storage).resize_(len(batch), *list(elem.size()))
        return torch.stack(batch, 0, out=out)
    elif (
        elem_type.__module__ == "numpy"
        and elem_type.__name__ != "str_"
        and elem_type.__name__ != "string_"
    ):
        if elem_type.__name__ == "ndarray" or elem_type.__name__ == "memmap":
            # array of string classes and object
            if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
                raise TypeError(default_collate_err_msg_format.format(elem.dtype))

            return [torch.as_tensor(b) for b in batch]
        elif elem.shape == ():  # scalars
            return torch.as_tensor(batch)
    elif isinstance(elem, float):
        return torch.tensor(batch, dtype=torch.float64)
    elif isinstance(elem, int):
        return torch.tensor(batch)
    elif isinstance(elem, string_classes):
        return batch
    elif isinstance(elem, collections.abc.Mapping):
        try:
            return elem_type({key: custom_list_collate([d[key] for d in batch]) for key in elem})
        except TypeError:
            # The mapping type may not support `__init__(iterable)`.
            return {key: custom_list_collate([d[key] for d in batch]) for key in elem}
    elif isinstance(elem, tuple) and hasattr(elem, "_fields"):  # namedtuple
        return elem_type(*(custom_list_collate(samples) for samples in zip(*batch)))
    elif isinstance(elem, collections.abc.Sequence):
        # check to make sure that the elements in batch have consistent size
        it = iter(batch)
        elem_size = len(next(it))
        if not all(len(elem) == elem_size for elem in it):
            raise RuntimeError("each element in list of batch should be of equal size")
        # transposed = list(zip(*batch))  # It may be accessed twice, so we use a list.

        return batch

        # if isinstance(elem, tuple):
        #     return [
        #         custom_list_collate(samples) for samples in transposed
        #     ]  # Backwards compatibility.
        # else:
        #     try:
        #         return elem_type([custom_list_collate(samples) for samples in transposed])
        #     except TypeError:
        #         # The sequence type may not support `__init__(iterable)` (e.g., `range`).
        #         return [custom_list_collate(samples) for samples in transposed]

    raise TypeError(default_collate_err_msg_format.format(elem_type))