Spaces:
Paused
Paused
| from langchain import HuggingFacePipeline | |
| from langchain.chains import RetrievalQA | |
| from langchain.document_loaders import BSHTMLLoader, DirectoryLoader | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.vectorstores import Chroma | |
| from transformers import AutoTokenizer | |
| import gradio as gr | |
| bshtml_dir_loader = DirectoryLoader('./data/', loader_cls=BSHTMLLoader) | |
| data = bshtml_dir_loader.load() | |
| bloomz_tokenizer = AutoTokenizer.from_pretrained("bigscience/bloomz-1b7") | |
| text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(bloomz_tokenizer, | |
| chunk_size=100, | |
| chunk_overlap=0, | |
| separator="\n") | |
| documents = text_splitter.split_documents(data) | |
| embeddings = HuggingFaceEmbeddings() | |
| llm = HuggingFacePipeline.from_model_id( | |
| model_id="bigscience/bloomz-1b7", | |
| task="text-generation", | |
| model_kwargs={"temperature" : 0, "max_length" : 500}) | |
| vectordb = Chroma.from_documents(documents=documents, embedding=embeddings) | |
| doc_retriever = vectordb.as_retriever() | |
| shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever) | |
| def query(query): | |
| return shakespeare_qa.run(query) | |
| iface = gr.Interface(fn=query, inputs="text", outputs="text") | |
| iface.launch() | |