File size: 9,968 Bytes
f016728
 
 
 
64a316c
f016728
 
 
 
 
d89d5c1
 
 
 
 
0c5107e
 
 
d89d5c1
0c5107e
d89d5c1
 
 
 
 
 
 
 
0c5107e
 
 
 
 
 
 
 
 
 
 
d89d5c1
 
f016728
5eecc8f
b2d3c53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f016728
 
 
d213273
b2d3c53
 
 
 
 
 
 
64a316c
b2d3c53
 
f016728
 
 
 
 
 
 
 
 
 
64a316c
 
f016728
 
 
 
 
 
 
 
 
 
 
 
64a316c
 
 
 
 
 
 
 
 
 
 
f016728
 
 
64a316c
f016728
 
 
 
64a316c
f016728
 
 
 
 
f8f0961
f016728
 
 
 
64a316c
 
 
 
 
86f9e46
64a316c
f016728
 
 
 
 
 
 
 
 
 
 
 
64a316c
f016728
 
 
 
64a316c
f016728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64a316c
f016728
 
 
 
64a316c
f016728
 
 
 
 
 
64a316c
f016728
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import gradio as gr
import numpy as np
import torch
from pathlib import Path
import tempfile

from TTS.api import TTS
from TTS.utils.manage import ModelManager


title = "Coqui.ai: Text-to-Speech generation and Voice Conversion"
description = """
Coqui.ai is the library for advanced Text-to-Speech generation and Voice Conversion. It's built on the latest research, 
was designed to achieve the best trade-off among ease-of-training, speed and quality. Coqui.ai comes with 
pretrained models, tools for measuring dataset quality and already used in 20+ languages for products and research projects. 
For the demo we selected 6 best performing TTS models from Coqui.ai library. <b>How to use:</b> Select a model from 
dropdown box. Some multispeaker/multilingual models allow to select speaker and language as well. 
Upload or select voice to be cloned [or record using the microphone -TBD]. 
Enter text in the text box or upload audio file [or record using the microphone -TBD]. Press "Text to speech" or 
"Convert audio" button. For TTS task you can choose not to clone voice and hear original voice of the model.

"""
article = """
<div style='margin:20px auto;'>
<p>References: <a href="https://github.com/coqui-ai/TTS">original GitHub</a> |
<a href="https://tts.readthedocs.io/en/latest/">Documentation</a> |
<a href="https://app.coqui.ai/auth/signin">Voice cloning on Coqui Studio</a> |
<a href="https://github.com/erogol/TTS-papers">Text-to-Speech paper collection</a>
<pre>
With few exceptions, Voice Conversion in Coqui.ai is implemented with FreeVC model
@misc{li2022freevc,
      title={FreeVC: Towards High-Quality Text-Free One-Shot Voice Conversion}, 
      author={Jingyi li and Weiping tu and Li xiao},
      year={2022},
      eprint={2210.15418},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}
</pre>
</div>
"""


class TTS_local(TTS):
    def __init__(self, model_name=None, output_prefix: str = './', progress_bar: bool = True, gpu=False):
        super().__init__(
                model_name=None,
                model_path=None,
                config_path=None,
                vocoder_path=None,
                vocoder_config_path=None,
                progress_bar=progress_bar,
                gpu=False,
        )
        self.manager = ModelManager(models_file=self.get_models_file_path(), output_prefix=output_prefix, progress_bar=progress_bar, verbose=False)
        if model_name is not None:
            if "tts_models" in model_name or "coqui_studio" in model_name:
                self.load_tts_model_by_name(model_name, gpu)
            elif "voice_conversion_models" in model_name:
                self.load_vc_model_by_name(model_name, gpu)        

        
device = "cuda" if torch.cuda.is_available() else "cpu"
GPU = device == "cuda"
INT16MAX = np.iinfo(np.int16).max
MODEL_DIR = './'
MANAGER = ModelManager(verbose=False)

model_ids = MANAGER.list_models()
local_model_ids = [p.parts[-1].replace('--', '/') for p in (Path(MODEL_DIR) / 'tts').glob('*') if p.is_dir() and (p.parts[-1].replace('--', '/') in model_ids)]
model_tts_ids = [model for model in local_model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]
model_vocoder_ids = [model for model in local_model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]
model_vconv_ids = [model for model in local_model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]

VC_MODEL = TTS_local(model_name='voice_conversion_models/multilingual/vctk/freevc24', 
                     output_prefix=MODEL_DIR, progress_bar=False, gpu=GPU)

examples_pt = 'examples'
allowed_extentions = ['.mp3', '.wav']
examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}
verse = """Mary had a little lamb,
Its fleece was white as snow.
Everywhere the child went,
The little lamb was sure to go."""


def on_model_tts_select(model_name):
    tts_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)
    languages = tts_var.languages if tts_var.is_multi_lingual else ['']
    speakers = [s.replace('\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting
    language = languages[0]
    speaker = speakers[0]
    return tts_var, gr.update(choices=languages, value=language, interactive=tts_var.is_multi_lingual),\
                gr.update(choices=speakers, value=speaker, interactive=tts_var.is_multi_speaker)


def on_voicedropdown(x):
    return examples[x]


def voice_clone(source_wav, target_wav):
    print(f'model: {VC_MODEL.model_name}\nsource_wav: {source_wav}\ntarget_wav: {target_wav}')
    sample_rate = VC_MODEL.voice_converter.output_sample_rate
    if source_wav is None or target_wav is None:
        return (sample_rate, np.zeros(0).astype(np.int16))

    speech = VC_MODEL.voice_conversion(source_wav=source_wav, target_wav=target_wav)
    speech = (np.array(speech) * INT16MAX).astype(np.int16)
    return (sample_rate, speech)


def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_voice):
    if len(text.strip()) == 0 or tts_model is None or (target_wav is None and not use_original_voice):
        return (16000, np.zeros(0).astype(np.int16))

    sample_rate = tts_model.synthesizer.output_sample_rate
    if tts_model.is_multi_speaker:
        speaker = {s.replace('\n', '-n'): s for s in tts_model.speakers}[speaker] # there's weird speaker formatting
    print(f'model: {tts_model.model_name}\nlanguage: {language}\nspeaker: {speaker}')

    language = None if language == '' else language
    speaker = None if speaker == '' else speaker
    if use_original_voice:
        print('Using original voice')
        speech = tts_model.tts(text, language=language, speaker=speaker)       
    elif tts_model.synthesizer.tts_model.speaker_manager and tts_model.synthesizer.tts_model.speaker_manager.encoder_ap:
        print('voice cloning with the tts')
        speech = tts_model.tts(text, language=language, speaker_wav=target_wav)
    else:
        print('voice cloning with the voice conversion model')
#         speech = tts_model.tts_with_vc(text, language=language, speaker_wav=target_wav)
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
            # Lazy code... save it to a temp file to resample it while reading it for VC
            tts_model.tts_to_file(text, language=language, speaker=speaker, file_path=fp.name)
        speech = VC_MODEL.voice_conversion(source_wav=fp.name, target_wav=target_wav)
        sample_rate = VC_MODEL.voice_converter.output_sample_rate
        

    speech = (np.array(speech) * INT16MAX).astype(np.int16)
    return (sample_rate, speech)


with gr.Blocks() as demo:
    tts_model = gr.State(None)
    def activate(*args):
        return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)
    def deactivate(*args):
        return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)

    
    gr.Markdown(description)

    with gr.Row(equal_height=True):
        with gr.Column(scale=5, min_width=50):
            model_tts_dropdown = gr.Dropdown(model_tts_ids, value=None, label='Text-to-speech model', interactive=True)
        with gr.Column(scale=1, min_width=10):
                language_dropdown = gr.Dropdown(None, value=None, label='Language', interactive=False, visible=True)
        with gr.Column(scale=1, min_width=10):
                speaker_dropdown = gr.Dropdown(None, value=None, label='Speaker', interactive=False, visible=True)
                
    with gr.Accordion("Target voice", open=False) as accordion:
        gr.Markdown("Upload target voice...")
        with gr.Row(equal_height=True):
            voice_upload = gr.Audio(label='Upload target voice', source='upload', type='filepath')
            voice_dropdown = gr.Dropdown(examples, label='Examples', interactive=True)

    with gr.Row(equal_height=True):
        with gr.Column(scale=2):
            with gr.Row(equal_height=True):
                with gr.Column():
                    text_to_convert = gr.Textbox(verse)
                    orig_voice = gr.Checkbox(label='Use original voice')
                voice_to_convert = gr.Audio(label="Upload voice to convert", source='upload', type='filepath')
            with gr.Row(equal_height=True):
                button_text = gr.Button('Text to speech', interactive=True)
                button_audio = gr.Button('Convert audio', interactive=True)
    with gr.Row(equal_height=True):
        speech = gr.Audio(label='Converted Speech', type='numpy', visible=True, interactive=False) 
        
    # actions
    model_tts_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
        then(fn=on_model_tts_select, inputs=[model_tts_dropdown], outputs=[tts_model, language_dropdown, speaker_dropdown]).\
        then(activate, [button_text, button_audio], [button_text, button_audio])
    voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
        then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\
        then(activate, [button_text, button_audio], [button_text, button_audio])

    button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
        then(fn=text_to_speech, inputs=[text_to_convert, tts_model, language_dropdown, speaker_dropdown, voice_upload, orig_voice], 
             outputs=speech).\
        then(activate, [button_text, button_audio], [button_text, button_audio])

    button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
        then(fn=voice_clone, inputs=[voice_to_convert, voice_upload], outputs=speech).\
        then(activate, [button_text, button_audio], [button_text, button_audio])
    
    gr.HTML(article)
demo.launch(share=False)