File size: 9,968 Bytes
f016728 64a316c f016728 d89d5c1 0c5107e d89d5c1 0c5107e d89d5c1 0c5107e d89d5c1 f016728 5eecc8f b2d3c53 f016728 d213273 b2d3c53 64a316c b2d3c53 f016728 64a316c f016728 64a316c f016728 64a316c f016728 64a316c f016728 f8f0961 f016728 64a316c 86f9e46 64a316c f016728 64a316c f016728 64a316c f016728 64a316c f016728 64a316c f016728 64a316c f016728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import gradio as gr
import numpy as np
import torch
from pathlib import Path
import tempfile
from TTS.api import TTS
from TTS.utils.manage import ModelManager
title = "Coqui.ai: Text-to-Speech generation and Voice Conversion"
description = """
Coqui.ai is the library for advanced Text-to-Speech generation and Voice Conversion. It's built on the latest research,
was designed to achieve the best trade-off among ease-of-training, speed and quality. Coqui.ai comes with
pretrained models, tools for measuring dataset quality and already used in 20+ languages for products and research projects.
For the demo we selected 6 best performing TTS models from Coqui.ai library. <b>How to use:</b> Select a model from
dropdown box. Some multispeaker/multilingual models allow to select speaker and language as well.
Upload or select voice to be cloned [or record using the microphone -TBD].
Enter text in the text box or upload audio file [or record using the microphone -TBD]. Press "Text to speech" or
"Convert audio" button. For TTS task you can choose not to clone voice and hear original voice of the model.
"""
article = """
<div style='margin:20px auto;'>
<p>References: <a href="https://github.com/coqui-ai/TTS">original GitHub</a> |
<a href="https://tts.readthedocs.io/en/latest/">Documentation</a> |
<a href="https://app.coqui.ai/auth/signin">Voice cloning on Coqui Studio</a> |
<a href="https://github.com/erogol/TTS-papers">Text-to-Speech paper collection</a>
<pre>
With few exceptions, Voice Conversion in Coqui.ai is implemented with FreeVC model
@misc{li2022freevc,
title={FreeVC: Towards High-Quality Text-Free One-Shot Voice Conversion},
author={Jingyi li and Weiping tu and Li xiao},
year={2022},
eprint={2210.15418},
archivePrefix={arXiv},
primaryClass={cs.SD}
}
</pre>
</div>
"""
class TTS_local(TTS):
def __init__(self, model_name=None, output_prefix: str = './', progress_bar: bool = True, gpu=False):
super().__init__(
model_name=None,
model_path=None,
config_path=None,
vocoder_path=None,
vocoder_config_path=None,
progress_bar=progress_bar,
gpu=False,
)
self.manager = ModelManager(models_file=self.get_models_file_path(), output_prefix=output_prefix, progress_bar=progress_bar, verbose=False)
if model_name is not None:
if "tts_models" in model_name or "coqui_studio" in model_name:
self.load_tts_model_by_name(model_name, gpu)
elif "voice_conversion_models" in model_name:
self.load_vc_model_by_name(model_name, gpu)
device = "cuda" if torch.cuda.is_available() else "cpu"
GPU = device == "cuda"
INT16MAX = np.iinfo(np.int16).max
MODEL_DIR = './'
MANAGER = ModelManager(verbose=False)
model_ids = MANAGER.list_models()
local_model_ids = [p.parts[-1].replace('--', '/') for p in (Path(MODEL_DIR) / 'tts').glob('*') if p.is_dir() and (p.parts[-1].replace('--', '/') in model_ids)]
model_tts_ids = [model for model in local_model_ids if 'tts_models' in model and ('/multilingual/' in model or '/en/' in model)]
model_vocoder_ids = [model for model in local_model_ids if 'vocoder_models' in model and ('/universal/' in model or '/en/' in model)]
model_vconv_ids = [model for model in local_model_ids if 'voice_conversion_models' in model and ('/multilingual/' in model or '/en/' in model)]
VC_MODEL = TTS_local(model_name='voice_conversion_models/multilingual/vctk/freevc24',
output_prefix=MODEL_DIR, progress_bar=False, gpu=GPU)
examples_pt = 'examples'
allowed_extentions = ['.mp3', '.wav']
examples = {f.name: f for f in Path(examples_pt).glob('*') if f.suffix in allowed_extentions}
verse = """Mary had a little lamb,
Its fleece was white as snow.
Everywhere the child went,
The little lamb was sure to go."""
def on_model_tts_select(model_name):
tts_var = TTS(model_name=model_name, progress_bar=False, gpu=GPU)
languages = tts_var.languages if tts_var.is_multi_lingual else ['']
speakers = [s.replace('\n', '-n') for s in tts_var.speakers] if tts_var.is_multi_speaker else [''] # there's weird speaker formatting
language = languages[0]
speaker = speakers[0]
return tts_var, gr.update(choices=languages, value=language, interactive=tts_var.is_multi_lingual),\
gr.update(choices=speakers, value=speaker, interactive=tts_var.is_multi_speaker)
def on_voicedropdown(x):
return examples[x]
def voice_clone(source_wav, target_wav):
print(f'model: {VC_MODEL.model_name}\nsource_wav: {source_wav}\ntarget_wav: {target_wav}')
sample_rate = VC_MODEL.voice_converter.output_sample_rate
if source_wav is None or target_wav is None:
return (sample_rate, np.zeros(0).astype(np.int16))
speech = VC_MODEL.voice_conversion(source_wav=source_wav, target_wav=target_wav)
speech = (np.array(speech) * INT16MAX).astype(np.int16)
return (sample_rate, speech)
def text_to_speech(text, tts_model, language, speaker, target_wav, use_original_voice):
if len(text.strip()) == 0 or tts_model is None or (target_wav is None and not use_original_voice):
return (16000, np.zeros(0).astype(np.int16))
sample_rate = tts_model.synthesizer.output_sample_rate
if tts_model.is_multi_speaker:
speaker = {s.replace('\n', '-n'): s for s in tts_model.speakers}[speaker] # there's weird speaker formatting
print(f'model: {tts_model.model_name}\nlanguage: {language}\nspeaker: {speaker}')
language = None if language == '' else language
speaker = None if speaker == '' else speaker
if use_original_voice:
print('Using original voice')
speech = tts_model.tts(text, language=language, speaker=speaker)
elif tts_model.synthesizer.tts_model.speaker_manager and tts_model.synthesizer.tts_model.speaker_manager.encoder_ap:
print('voice cloning with the tts')
speech = tts_model.tts(text, language=language, speaker_wav=target_wav)
else:
print('voice cloning with the voice conversion model')
# speech = tts_model.tts_with_vc(text, language=language, speaker_wav=target_wav)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
# Lazy code... save it to a temp file to resample it while reading it for VC
tts_model.tts_to_file(text, language=language, speaker=speaker, file_path=fp.name)
speech = VC_MODEL.voice_conversion(source_wav=fp.name, target_wav=target_wav)
sample_rate = VC_MODEL.voice_converter.output_sample_rate
speech = (np.array(speech) * INT16MAX).astype(np.int16)
return (sample_rate, speech)
with gr.Blocks() as demo:
tts_model = gr.State(None)
def activate(*args):
return gr.update(interactive=True) if len(args) == 1 else [gr.update(interactive=True)] * len(args)
def deactivate(*args):
return gr.update(interactive=False) if len(args) == 1 else [gr.update(interactive=False)] * len(args)
gr.Markdown(description)
with gr.Row(equal_height=True):
with gr.Column(scale=5, min_width=50):
model_tts_dropdown = gr.Dropdown(model_tts_ids, value=None, label='Text-to-speech model', interactive=True)
with gr.Column(scale=1, min_width=10):
language_dropdown = gr.Dropdown(None, value=None, label='Language', interactive=False, visible=True)
with gr.Column(scale=1, min_width=10):
speaker_dropdown = gr.Dropdown(None, value=None, label='Speaker', interactive=False, visible=True)
with gr.Accordion("Target voice", open=False) as accordion:
gr.Markdown("Upload target voice...")
with gr.Row(equal_height=True):
voice_upload = gr.Audio(label='Upload target voice', source='upload', type='filepath')
voice_dropdown = gr.Dropdown(examples, label='Examples', interactive=True)
with gr.Row(equal_height=True):
with gr.Column(scale=2):
with gr.Row(equal_height=True):
with gr.Column():
text_to_convert = gr.Textbox(verse)
orig_voice = gr.Checkbox(label='Use original voice')
voice_to_convert = gr.Audio(label="Upload voice to convert", source='upload', type='filepath')
with gr.Row(equal_height=True):
button_text = gr.Button('Text to speech', interactive=True)
button_audio = gr.Button('Convert audio', interactive=True)
with gr.Row(equal_height=True):
speech = gr.Audio(label='Converted Speech', type='numpy', visible=True, interactive=False)
# actions
model_tts_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
then(fn=on_model_tts_select, inputs=[model_tts_dropdown], outputs=[tts_model, language_dropdown, speaker_dropdown]).\
then(activate, [button_text, button_audio], [button_text, button_audio])
voice_dropdown.change(deactivate, [button_text, button_audio], [button_text, button_audio]).\
then(fn=on_voicedropdown, inputs=voice_dropdown, outputs=voice_upload).\
then(activate, [button_text, button_audio], [button_text, button_audio])
button_text.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
then(fn=text_to_speech, inputs=[text_to_convert, tts_model, language_dropdown, speaker_dropdown, voice_upload, orig_voice],
outputs=speech).\
then(activate, [button_text, button_audio], [button_text, button_audio])
button_audio.click(deactivate, [button_text, button_audio], [button_text, button_audio]).\
then(fn=voice_clone, inputs=[voice_to_convert, voice_upload], outputs=speech).\
then(activate, [button_text, button_audio], [button_text, button_audio])
gr.HTML(article)
demo.launch(share=False) |