rajkr commited on
Commit
dd93405
·
verified ·
1 Parent(s): 0c2cde1

initial commit

Browse files
Files changed (3) hide show
  1. README.md +3 -1
  2. app.py +87 -147
  3. requirements.txt +0 -6
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Text-to-Image Gradio Template
3
  emoji: 🖼
4
  colorFrom: purple
5
  colorTo: red
@@ -7,6 +7,8 @@ sdk: gradio
7
  sdk_version: 5.0.1
8
  app_file: app.py
9
  pinned: false
 
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Bar Plot
3
  emoji: 🖼
4
  colorFrom: purple
5
  colorTo: red
 
7
  sdk_version: 5.0.1
8
  app_file: app.py
9
  pinned: false
10
+ license: apache-2.0
11
+ short_description: ' Event Parameters table '
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,154 +1,94 @@
 
 
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  if __name__ == "__main__":
154
- demo.launch()
 
1
+ import pandas as pd
2
+ from random import randint, random
3
  import gradio as gr
 
 
4
 
 
 
 
5
 
6
+ temp_sensor_data = pd.DataFrame(
7
+ {
8
+ "time": pd.date_range("2021-01-01", end="2021-01-05", periods=200),
9
+ "temperature": [randint(50 + 10 * (i % 2), 65 + 15 * (i % 2)) for i in range(200)],
10
+ "humidity": [randint(50 + 10 * (i % 2), 65 + 15 * (i % 2)) for i in range(200)],
11
+ "location": ["indoor", "outdoor"] * 100,
12
+ }
13
+ )
14
+
15
+ food_rating_data = pd.DataFrame(
16
+ {
17
+ "cuisine": [["Italian", "Mexican", "Chinese"][i % 3] for i in range(100)],
18
+ "rating": [random() * 4 + 0.5 * (i % 3) for i in range(100)],
19
+ "price": [randint(10, 50) + 4 * (i % 3) for i in range(100)],
20
+ "wait": [random() for i in range(100)],
21
+ }
22
+ )
23
+
24
+ with gr.Blocks() as bar_plots:
25
+ with gr.Row():
26
+ start = gr.DateTime("2021-01-01 00:00:00", label="Start")
27
+ end = gr.DateTime("2021-01-05 00:00:00", label="End")
28
+ apply_btn = gr.Button("Apply", scale=0)
29
+ with gr.Row():
30
+ group_by = gr.Radio(["None", "30m", "1h", "4h", "1d"], value="None", label="Group by")
31
+ aggregate = gr.Radio(["sum", "mean", "median", "min", "max"], value="sum", label="Aggregation")
32
+
33
+ temp_by_time = gr.BarPlot(
34
+ temp_sensor_data,
35
+ x="time",
36
+ y="temperature",
37
+ )
38
+ temp_by_time_location = gr.BarPlot(
39
+ temp_sensor_data,
40
+ x="time",
41
+ y="temperature",
42
+ color="location",
43
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
+ time_graphs = [temp_by_time, temp_by_time_location]
46
+ group_by.change(
47
+ lambda group: [gr.BarPlot(x_bin=None if group == "None" else group)] * len(time_graphs),
48
+ group_by,
49
+ time_graphs
50
+ )
51
+ aggregate.change(
52
+ lambda aggregate: [gr.BarPlot(y_aggregate=aggregate)] * len(time_graphs),
53
+ aggregate,
54
+ time_graphs
 
 
 
 
 
55
  )
56
 
57
+ def rescale(select: gr.SelectData):
58
+ return select.index
59
+ rescale_evt = gr.on([plot.select for plot in time_graphs], rescale, None, [start, end])
60
+
61
+ for trigger in [apply_btn.click, rescale_evt.then]:
62
+ trigger(
63
+ lambda start, end: [gr.BarPlot(x_lim=[start, end])] * len(time_graphs), [start, end], time_graphs
64
+ )
65
+
66
+ with gr.Row():
67
+ price_by_cuisine = gr.BarPlot(
68
+ food_rating_data,
69
+ x="cuisine",
70
+ y="price",
71
+ )
72
+ with gr.Column(scale=0):
73
+ gr.Button("Sort $ > $$$").click(lambda: gr.BarPlot(sort="y"), None, price_by_cuisine)
74
+ gr.Button("Sort $$$ > $").click(lambda: gr.BarPlot(sort="-y"), None, price_by_cuisine)
75
+ gr.Button("Sort A > Z").click(lambda: gr.BarPlot(sort=["Chinese", "Italian", "Mexican"]), None, price_by_cuisine)
76
+
77
+ with gr.Row():
78
+ price_by_rating = gr.BarPlot(
79
+ food_rating_data,
80
+ x="rating",
81
+ y="price",
82
+ x_bin=1,
83
+ )
84
+ price_by_rating_color = gr.BarPlot(
85
+ food_rating_data,
86
+ x="rating",
87
+ y="price",
88
+ color="cuisine",
89
+ x_bin=1,
90
+ color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
91
+ )
92
+
93
  if __name__ == "__main__":
94
+ bar_plots.launch()
requirements.txt CHANGED
@@ -1,6 +0,0 @@
1
- accelerate
2
- diffusers
3
- invisible_watermark
4
- torch
5
- transformers
6
- xformers