Spaces:
Running
Running
File size: 7,961 Bytes
c96f14a 582656c c96f14a e452b0e c96f14a e452b0e c96f14a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import streamlit as st
from google import genai
from PIL import Image
import os
from typing import Tuple, Optional
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class CTScanAnalyzer:
def __init__(self, api_key: str):
"""Initialize the CT Scan Analyzer with API key and configuration."""
self.client = genai.Client(api_key=api_key)
self.setup_page_config()
self.apply_custom_styles()
@staticmethod
def setup_page_config() -> None:
"""Configure Streamlit page settings."""
st.set_page_config(
page_title="CT Scan Analytics",
page_icon="π₯",
layout="wide"
)
@staticmethod
def apply_custom_styles() -> None:
"""Apply custom CSS styles with improved dark theme."""
st.markdown("""
<style>
:root {
--background-color: #1a1a1a;
--secondary-bg: #2d2d2d;
--text-color: #e0e0e0;
--accent-color: #4CAF50;
--border-color: #404040;
--hover-color: #45a049;
}
.main { background-color: var(--background-color); }
.stApp { background-color: var(--background-color); }
.stButton>button {
width: 100%;
background-color: var(--accent-color);
color: white;
padding: 0.75rem;
border-radius: 6px;
border: none;
font-weight: 600;
transition: background-color 0.3s ease;
}
.stButton>button:hover {
background-color: var(--hover-color);
}
.report-container {
background-color: var(--secondary-bg);
padding: 2rem;
border-radius: 12px;
margin: 1rem 0;
border: 1px solid var(--border-color);
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
</style>
""", unsafe_allow_html=True)
def analyze_image(self, img: Image.Image) -> Tuple[Optional[str], Optional[str]]:
"""
Analyze CT scan image using Gemini AI.
Returns tuple of (doctor_analysis, patient_analysis).
"""
try:
prompts = {
"doctor": """
Provide a structured analysis of this CT scan for medical professionals without including any introductory or acknowledgment phrases.
Follow the structure below:
1. Initial Observations
- Key anatomical structures
- Tissue density patterns
- Contrast enhancement patterns
2. Detailed Findings
- Primary abnormalities
- Secondary findings
- Measurements and dimensions
3. Clinical Correlation
- Differential diagnoses
- Recommended additional imaging
- Suggested clinical correlation
4. Technical Assessment
- Image quality
- Positioning
- Artifacts if present
""",
"patient": """
Explain this CT scan in clear, simple terms for a patient without including any introductory or acknowledgment phrases.
Follow the structure below:
1. What We're Looking At
- The part of the body shown
- What appears normal
- Any notable findings
2. Next Steps
- What these findings might mean
- Questions to ask your doctor
- Any follow-up that might be needed
Remember to use everyday language and avoid medical terminology.
"""
}
responses = {}
for audience, prompt in prompts.items():
response = self.client.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt, img]
)
responses[audience] = response.text if hasattr(response, 'text') else None
return responses["doctor"], responses["patient"]
except Exception as e:
logger.error(f"Analysis failed: {str(e)}")
return None, None
def run(self):
"""Run the Streamlit application."""
st.title("π₯ CT Scan Analytics")
st.markdown("""
Advanced CT scan analysis powered by AI. Upload your scan for instant
insights tailored for both medical professionals and patients.
""")
col1, col2 = st.columns([1, 1.5])
with col1:
uploaded_file = self.handle_file_upload()
with col2:
if uploaded_file:
self.process_analysis(uploaded_file)
else:
self.show_instructions()
self.show_footer()
def handle_file_upload(self) -> Optional[object]:
"""Handle file upload and display image preview."""
uploaded_file = st.file_uploader(
"Upload CT Scan Image",
type=["png", "jpg", "jpeg"],
help="Supported formats: PNG, JPG, JPEG"
)
if uploaded_file:
img = Image.open(uploaded_file)
st.image(img, caption="Uploaded CT Scan", use_column_width=True)
with st.expander("Image Details"):
st.write(f"*Filename:* {uploaded_file.name}")
st.write(f"*Size:* {uploaded_file.size/1024:.2f} KB")
st.write(f"*Format:* {img.format}")
st.write(f"*Dimensions:* {img.size[0]}x{img.size[1]} pixels")
return uploaded_file
def process_analysis(self, uploaded_file: object) -> None:
"""Process the uploaded image and display analysis."""
if st.button("π Analyze CT Scan", key="analyze_button"):
with st.spinner("Analyzing CT scan..."):
img = Image.open(uploaded_file)
doctor_analysis, patient_analysis = self.analyze_image(img)
if doctor_analysis and patient_analysis:
tab1, tab2 = st.tabs(["π Medical Report", "π₯ Patient Summary"])
with tab1:
st.markdown("### Medical Professional's Report")
st.markdown(f"<div class='report-container'>{doctor_analysis}</div>",
unsafe_allow_html=True)
with tab2:
st.markdown("### Patient-Friendly Explanation")
st.markdown(f"<div class='report-container'>{patient_analysis}</div>",
unsafe_allow_html=True)
else:
st.error("Analysis failed. Please try again.")
@staticmethod
def show_instructions() -> None:
"""Display instructions when no image is uploaded."""
st.info("π Upload a CT scan image to begin analysis")
with st.expander("βΉ How it works"):
st.markdown("""
1. *Upload* your CT scan image
2. Click *Analyze*
3. Receive two detailed reports:
- Technical analysis for medical professionals
- Patient-friendly explanation
""")
@staticmethod
def show_footer() -> None:
st.markdown("---")
st.markdown(
"""
<div style='text-align: center'>
<p style='color: #888888; font-size: 0.8em;'>
UNDER DEVELOPMENT
</p>
</div>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
# Get API key from environment variable
api_key = "AIzaSyCp9j5OGZb5hlykMIAJhbDII3IHYJWCrnQ"
if not api_key:
st.error("Please set GEMINI_API_KEY environment variable")
else:
analyzer = CTScanAnalyzer(api_key)
analyzer.run() |