Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -76,14 +76,10 @@ def extract_treespecies_features(folder_path):
|
|
76 |
|
77 |
# print(species_feature_list[:2])
|
78 |
def perform_inference(cropped_images, species_feature_list, img_df):
|
79 |
-
|
80 |
-
client = setup_client()
|
81 |
-
st.success("Setting up knowledge database & BM25 retriever:")
|
82 |
-
# retriever = setup_retriever()
|
83 |
-
st.success("Setting up BM25 Retriever:")
|
84 |
for img_idx, item in enumerate(cropped_images):
|
85 |
image = item["image"]
|
86 |
-
feature_cp =
|
87 |
row_results = []
|
88 |
species_result = []
|
89 |
emoji = []
|
@@ -104,15 +100,14 @@ def perform_inference(cropped_images, species_feature_list, img_df):
|
|
104 |
item[f"result_{idx}"] = result
|
105 |
item[f"file_name_{idx}"] = species["file_name"]
|
106 |
row_results.append(species["file_name"])
|
107 |
-
# Regular expression to match the tree species name
|
108 |
-
species_pattern = r'identified_species\\([^\\]+) -'
|
109 |
|
110 |
-
# Search for the pattern in the file path
|
111 |
-
match = re.search(species_pattern, species["file_name"])
|
112 |
|
113 |
# Extract and print the tree species name if found
|
114 |
-
|
115 |
-
tree_species = match.group(1)
|
116 |
# species_info = retriever.invoke(f"Scientific name:{tree_species}")
|
117 |
|
118 |
# ans = generate_image(species_info, client)
|
@@ -122,9 +117,7 @@ def perform_inference(cropped_images, species_feature_list, img_df):
|
|
122 |
# species_context.append(text_context)
|
123 |
# print(ans)
|
124 |
# species_result.append(tree_species)
|
125 |
-
|
126 |
-
else:
|
127 |
-
print("Tree species name not found.")
|
128 |
img_df.at[img_idx, "species_identified"] = ", ".join(species_result) if species_result else "No similar species found"
|
129 |
img_df.at[img_idx, "result_file_path"] = ", ".join(row_results) if row_results else ""
|
130 |
# img_df.at[img_idx, "emoji"] = ", ".join(emoji) if emoji else ""
|
|
|
76 |
|
77 |
# print(species_feature_list[:2])
|
78 |
def perform_inference(cropped_images, species_feature_list, img_df):
|
79 |
+
|
|
|
|
|
|
|
|
|
80 |
for img_idx, item in enumerate(cropped_images):
|
81 |
image = item["image"]
|
82 |
+
feature_cp = extract_features_cp(image)
|
83 |
row_results = []
|
84 |
species_result = []
|
85 |
emoji = []
|
|
|
100 |
item[f"result_{idx}"] = result
|
101 |
item[f"file_name_{idx}"] = species["file_name"]
|
102 |
row_results.append(species["file_name"])
|
103 |
+
# # Regular expression to match the tree species name
|
104 |
+
# species_pattern = r'identified_species\\([^\\]+) -'
|
105 |
|
106 |
+
# # Search for the pattern in the file path
|
107 |
+
# match = re.search(species_pattern, species["file_name"])
|
108 |
|
109 |
# Extract and print the tree species name if found
|
110 |
+
|
|
|
111 |
# species_info = retriever.invoke(f"Scientific name:{tree_species}")
|
112 |
|
113 |
# ans = generate_image(species_info, client)
|
|
|
117 |
# species_context.append(text_context)
|
118 |
# print(ans)
|
119 |
# species_result.append(tree_species)
|
120 |
+
|
|
|
|
|
121 |
img_df.at[img_idx, "species_identified"] = ", ".join(species_result) if species_result else "No similar species found"
|
122 |
img_df.at[img_idx, "result_file_path"] = ", ".join(row_results) if row_results else ""
|
123 |
# img_df.at[img_idx, "emoji"] = ", ".join(emoji) if emoji else ""
|