Spaces:
Configuration error
Configuration error
import sys | |
import torch | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from omegaconf import OmegaConf | |
from einops import repeat, rearrange | |
from pytorch_lightning import seed_everything | |
from imwatermark import WatermarkEncoder | |
from scripts.txt2img import put_watermark | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentUpscaleFinetuneDiffusion | |
from ldm.util import exists, instantiate_from_config | |
torch.set_grad_enabled(False) | |
def initialize_model(config, ckpt): | |
config = OmegaConf.load(config) | |
model = instantiate_from_config(config.model) | |
model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False) | |
device = torch.device( | |
"cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
sampler = DDIMSampler(model) | |
return sampler | |
def make_batch_sd( | |
image, | |
txt, | |
device, | |
num_samples=1, | |
): | |
image = np.array(image.convert("RGB")) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
batch = { | |
"lr": rearrange(image, 'h w c -> 1 c h w'), | |
"txt": num_samples * [txt], | |
} | |
batch["lr"] = repeat(batch["lr"].to(device=device), | |
"1 ... -> n ...", n=num_samples) | |
return batch | |
def make_noise_augmentation(model, batch, noise_level=None): | |
x_low = batch[model.low_scale_key] | |
x_low = x_low.to(memory_format=torch.contiguous_format).float() | |
x_aug, noise_level = model.low_scale_model(x_low, noise_level) | |
return x_aug, noise_level | |
def paint(sampler, image, prompt, seed, scale, h, w, steps, num_samples=1, callback=None, eta=0., noise_level=None): | |
device = torch.device( | |
"cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = sampler.model | |
seed_everything(seed) | |
prng = np.random.RandomState(seed) | |
start_code = prng.randn(num_samples, model.channels, h, w) | |
start_code = torch.from_numpy(start_code).to( | |
device=device, dtype=torch.float32) | |
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") | |
wm = "SDV2" | |
wm_encoder = WatermarkEncoder() | |
wm_encoder.set_watermark('bytes', wm.encode('utf-8')) | |
with torch.no_grad(),\ | |
torch.autocast("cuda"): | |
batch = make_batch_sd( | |
image, txt=prompt, device=device, num_samples=num_samples) | |
c = model.cond_stage_model.encode(batch["txt"]) | |
c_cat = list() | |
if isinstance(model, LatentUpscaleFinetuneDiffusion): | |
for ck in model.concat_keys: | |
cc = batch[ck] | |
if exists(model.reshuffle_patch_size): | |
assert isinstance(model.reshuffle_patch_size, int) | |
cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w', | |
p1=model.reshuffle_patch_size, p2=model.reshuffle_patch_size) | |
c_cat.append(cc) | |
c_cat = torch.cat(c_cat, dim=1) | |
# cond | |
cond = {"c_concat": [c_cat], "c_crossattn": [c]} | |
# uncond cond | |
uc_cross = model.get_unconditional_conditioning(num_samples, "") | |
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]} | |
elif isinstance(model, LatentUpscaleDiffusion): | |
x_augment, noise_level = make_noise_augmentation( | |
model, batch, noise_level) | |
cond = {"c_concat": [x_augment], | |
"c_crossattn": [c], "c_adm": noise_level} | |
# uncond cond | |
uc_cross = model.get_unconditional_conditioning(num_samples, "") | |
uc_full = {"c_concat": [x_augment], "c_crossattn": [ | |
uc_cross], "c_adm": noise_level} | |
else: | |
raise NotImplementedError() | |
shape = [model.channels, h, w] | |
samples, intermediates = sampler.sample( | |
steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=uc_full, | |
x_T=start_code, | |
callback=callback | |
) | |
with torch.no_grad(): | |
x_samples_ddim = model.decode_first_stage(samples) | |
result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255 | |
return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result] | |
def pad_image(input_image): | |
pad_w, pad_h = np.max(((2, 2), np.ceil( | |
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size | |
im_padded = Image.fromarray( | |
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) | |
return im_padded | |
def predict(input_image, prompt, steps, num_samples, scale, seed, eta, noise_level): | |
init_image = input_image.convert("RGB") | |
image = pad_image(init_image) # resize to integer multiple of 32 | |
width, height = image.size | |
noise_level = torch.Tensor( | |
num_samples * [noise_level]).to(sampler.model.device).long() | |
sampler.make_schedule(steps, ddim_eta=eta, verbose=True) | |
result = paint( | |
sampler=sampler, | |
image=image, | |
prompt=prompt, | |
seed=seed, | |
scale=scale, | |
h=height, w=width, steps=steps, | |
num_samples=num_samples, | |
callback=None, | |
noise_level=noise_level | |
) | |
return result | |
sampler = initialize_model(sys.argv[1], sys.argv[2]) | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown("## Stable Diffusion Upscaling") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="pil") | |
gr.Markdown( | |
"Tip: Add a description of the object that should be upscaled, e.g.: 'a professional photograph of a cat") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider( | |
label="Number of Samples", minimum=1, maximum=4, value=1, step=1) | |
steps = gr.Slider(label="DDIM Steps", minimum=2, | |
maximum=200, value=75, step=1) | |
scale = gr.Slider( | |
label="Scale", minimum=0.1, maximum=30.0, value=10, step=0.1 | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=2147483647, | |
step=1, | |
randomize=True, | |
) | |
eta = gr.Number(label="eta (DDIM)", | |
value=0.0, min=0.0, max=1.0) | |
noise_level = None | |
if isinstance(sampler.model, LatentUpscaleDiffusion): | |
# TODO: make this work for all models | |
noise_level = gr.Number( | |
label="Noise Augmentation", min=0, max=350, value=20, step=1) | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated images", show_label=False).style( | |
grid=[2], height="auto") | |
run_button.click(fn=predict, inputs=[ | |
input_image, prompt, steps, num_samples, scale, seed, eta, noise_level], outputs=[gallery]) | |
block.launch() | |