Spaces:
Configuration error
Configuration error
import sys | |
import torch | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from omegaconf import OmegaConf | |
from einops import repeat, rearrange | |
from pytorch_lightning import seed_everything | |
from imwatermark import WatermarkEncoder | |
from scripts.txt2img import put_watermark | |
from ldm.util import instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.data.util import AddMiDaS | |
torch.set_grad_enabled(False) | |
def initialize_model(config, ckpt): | |
config = OmegaConf.load(config) | |
model = instantiate_from_config(config.model) | |
model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False) | |
device = torch.device( | |
"cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
sampler = DDIMSampler(model) | |
return sampler | |
def make_batch_sd( | |
image, | |
txt, | |
device, | |
num_samples=1, | |
model_type="dpt_hybrid" | |
): | |
image = np.array(image.convert("RGB")) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
# sample['jpg'] is tensor hwc in [-1, 1] at this point | |
midas_trafo = AddMiDaS(model_type=model_type) | |
batch = { | |
"jpg": image, | |
"txt": num_samples * [txt], | |
} | |
batch = midas_trafo(batch) | |
batch["jpg"] = rearrange(batch["jpg"], 'h w c -> 1 c h w') | |
batch["jpg"] = repeat(batch["jpg"].to(device=device), | |
"1 ... -> n ...", n=num_samples) | |
batch["midas_in"] = repeat(torch.from_numpy(batch["midas_in"][None, ...]).to( | |
device=device), "1 ... -> n ...", n=num_samples) | |
return batch | |
def paint(sampler, image, prompt, t_enc, seed, scale, num_samples=1, callback=None, | |
do_full_sample=False): | |
device = torch.device( | |
"cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = sampler.model | |
seed_everything(seed) | |
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") | |
wm = "SDV2" | |
wm_encoder = WatermarkEncoder() | |
wm_encoder.set_watermark('bytes', wm.encode('utf-8')) | |
with torch.no_grad(),\ | |
torch.autocast("cuda"): | |
batch = make_batch_sd( | |
image, txt=prompt, device=device, num_samples=num_samples) | |
z = model.get_first_stage_encoding(model.encode_first_stage( | |
batch[model.first_stage_key])) # move to latent space | |
c = model.cond_stage_model.encode(batch["txt"]) | |
c_cat = list() | |
for ck in model.concat_keys: | |
cc = batch[ck] | |
cc = model.depth_model(cc) | |
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3], | |
keepdim=True) | |
display_depth = (cc - depth_min) / (depth_max - depth_min) | |
depth_image = Image.fromarray( | |
(display_depth[0, 0, ...].cpu().numpy() * 255.).astype(np.uint8)) | |
cc = torch.nn.functional.interpolate( | |
cc, | |
size=z.shape[2:], | |
mode="bicubic", | |
align_corners=False, | |
) | |
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3], | |
keepdim=True) | |
cc = 2. * (cc - depth_min) / (depth_max - depth_min) - 1. | |
c_cat.append(cc) | |
c_cat = torch.cat(c_cat, dim=1) | |
# cond | |
cond = {"c_concat": [c_cat], "c_crossattn": [c]} | |
# uncond cond | |
uc_cross = model.get_unconditional_conditioning(num_samples, "") | |
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]} | |
if not do_full_sample: | |
# encode (scaled latent) | |
z_enc = sampler.stochastic_encode( | |
z, torch.tensor([t_enc] * num_samples).to(model.device)) | |
else: | |
z_enc = torch.randn_like(z) | |
# decode it | |
samples = sampler.decode(z_enc, cond, t_enc, unconditional_guidance_scale=scale, | |
unconditional_conditioning=uc_full, callback=callback) | |
x_samples_ddim = model.decode_first_stage(samples) | |
result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255 | |
return [depth_image] + [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result] | |
def pad_image(input_image): | |
pad_w, pad_h = np.max(((2, 2), np.ceil( | |
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size | |
im_padded = Image.fromarray( | |
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) | |
return im_padded | |
def predict(input_image, prompt, steps, num_samples, scale, seed, eta, strength): | |
init_image = input_image.convert("RGB") | |
image = pad_image(init_image) # resize to integer multiple of 32 | |
sampler.make_schedule(steps, ddim_eta=eta, verbose=True) | |
assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]' | |
do_full_sample = strength == 1. | |
t_enc = min(int(strength * steps), steps-1) | |
result = paint( | |
sampler=sampler, | |
image=image, | |
prompt=prompt, | |
t_enc=t_enc, | |
seed=seed, | |
scale=scale, | |
num_samples=num_samples, | |
callback=None, | |
do_full_sample=do_full_sample | |
) | |
return result | |
sampler = initialize_model(sys.argv[1], sys.argv[2]) | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown("## Stable Diffusion Depth2Img") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="pil") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider( | |
label="Images", minimum=1, maximum=4, value=1, step=1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, | |
maximum=50, value=50, step=1) | |
scale = gr.Slider( | |
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1 | |
) | |
strength = gr.Slider( | |
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01 | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=2147483647, | |
step=1, | |
randomize=True, | |
) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
with gr.Column(): | |
gallery = gr.Gallery(label="Generated images", show_label=False).style( | |
grid=[2], height="auto") | |
run_button.click(fn=predict, inputs=[ | |
input_image, prompt, ddim_steps, num_samples, scale, seed, eta, strength], outputs=[gallery]) | |
block.launch() | |