Update optimization.py
Browse files- optimization.py +63 -72
optimization.py
CHANGED
|
@@ -1,31 +1,14 @@
|
|
| 1 |
-
import
|
| 2 |
-
import torchao
|
| 3 |
-
from torchao.quantization import DEFAULT_INT4_AUTOQUANT_CLASS_LIST
|
| 4 |
-
from typing import Any
|
| 5 |
-
from typing import Callable
|
| 6 |
-
from typing import ParamSpec
|
| 7 |
-
|
| 8 |
import spaces
|
| 9 |
import torch
|
| 10 |
from torch.utils._pytree import tree_map_only
|
| 11 |
-
from torchao.quantization import quantize_
|
| 12 |
-
from
|
| 13 |
-
from torchao.quantization import Int8WeightOnlyConfig
|
| 14 |
-
|
| 15 |
-
from optimization_utils import capture_component_call
|
| 16 |
-
from optimization_utils import aoti_compile
|
| 17 |
-
from optimization_utils import ZeroGPUCompiledModel
|
| 18 |
-
from optimization_utils import drain_module_parameters
|
| 19 |
-
P = ParamSpec('P')
|
| 20 |
|
|
|
|
| 21 |
|
| 22 |
TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim('num_frames', min=3, max=21)
|
| 23 |
-
|
| 24 |
-
TRANSFORMER_DYNAMIC_SHAPES = {
|
| 25 |
-
'hidden_states': {
|
| 26 |
-
2: TRANSFORMER_NUM_FRAMES_DIM,
|
| 27 |
-
},
|
| 28 |
-
}
|
| 29 |
|
| 30 |
INDUCTOR_CONFIGS = {
|
| 31 |
'conv_1x1_as_mm': True,
|
|
@@ -36,22 +19,14 @@ INDUCTOR_CONFIGS = {
|
|
| 36 |
'triton.cudagraphs': True,
|
| 37 |
}
|
| 38 |
|
| 39 |
-
from torchao.quantization import DEFAULT_INT4_AUTOQUANT_CLASS_LIST
|
| 40 |
-
|
| 41 |
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
|
| 42 |
print("[optimize_pipeline_] Starting pipeline optimization")
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
pipeline.text_encoder = torchao.autoquant(
|
| 47 |
-
torch.compile(pipeline.text_encoder, mode='max-autotune'),
|
| 48 |
-
qtensor_class_list=DEFAULT_INT4_AUTOQUANT_CLASS_LIST
|
| 49 |
-
).to("cuda")
|
| 50 |
-
print("[optimize_pipeline_] Text encoder autoquantized and compiled")
|
| 51 |
|
| 52 |
@spaces.GPU(duration=1500)
|
| 53 |
def compile_transformer():
|
| 54 |
-
# --- LOAD LORAS ---
|
| 55 |
print("[compile_transformer] Loading LoRA weights")
|
| 56 |
pipeline.load_lora_weights(
|
| 57 |
"DeepBeepMeep/Wan2.2",
|
|
@@ -66,64 +41,80 @@ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kw
|
|
| 66 |
)
|
| 67 |
pipeline.set_adapters(["lightning", "lightning_2"], adapter_weights=[1.0, 1.0])
|
| 68 |
|
| 69 |
-
# --- FUSE & UNLOAD ---
|
| 70 |
print("[compile_transformer] Fusing LoRA weights")
|
| 71 |
pipeline.fuse_lora(adapter_names=["lightning"], lora_scale=3.0, components=["transformer"])
|
| 72 |
pipeline.fuse_lora(adapter_names=["lightning_2"], lora_scale=1.0, components=["transformer_2"])
|
| 73 |
pipeline.unload_lora_weights()
|
| 74 |
|
| 75 |
-
|
| 76 |
-
print("[compile_transformer] Capturing shapes")
|
| 77 |
with torch.inference_mode():
|
| 78 |
with capture_component_call(pipeline, 'transformer') as call:
|
| 79 |
pipeline(*args, **kwargs)
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
|
| 84 |
-
|
| 85 |
-
pipeline.transformer
|
| 86 |
-
pipeline.transformer_2
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
assert any(p.numel() > 0 for p in pipeline.transformer_2.parameters()), "Transformer_2 has no params!"
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
)
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
if k['hidden_states'].shape[-1] > k['hidden_states'].shape[-2]:
|
| 105 |
-
return compiled_transformer(*a, **k)
|
| 106 |
-
k_mod = dict(k)
|
| 107 |
-
k_mod['hidden_states'] = hidden_states_transposed
|
| 108 |
-
return compiled_transformer(*a, **k_mod)
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
return compiled_transformer_2(*a, **k)
|
| 113 |
-
k_mod = dict(k)
|
| 114 |
-
k_mod['hidden_states'] = hidden_states_transposed
|
| 115 |
-
return compiled_transformer_2(*a, **k_mod)
|
| 116 |
|
| 117 |
-
|
| 118 |
-
pipeline.transformer_2.forward = combined_transformer_2
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
| 129 |
|
|
|
|
|
|
| 1 |
+
from typing import Any, Callable, ParamSpec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
from torch.utils._pytree import tree_map_only
|
| 5 |
+
from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig, Int8WeightOnlyConfig
|
| 6 |
+
from optimization_utils import capture_component_call, aoti_compile, ZeroGPUCompiledModel, drain_module_parameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
P = ParamSpec('P')
|
| 9 |
|
| 10 |
TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim('num_frames', min=3, max=21)
|
| 11 |
+
TRANSFORMER_DYNAMIC_SHAPES = {'hidden_states': {2: TRANSFORMER_NUM_FRAMES_DIM}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
INDUCTOR_CONFIGS = {
|
| 14 |
'conv_1x1_as_mm': True,
|
|
|
|
| 19 |
'triton.cudagraphs': True,
|
| 20 |
}
|
| 21 |
|
|
|
|
|
|
|
| 22 |
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
|
| 23 |
print("[optimize_pipeline_] Starting pipeline optimization")
|
| 24 |
|
| 25 |
+
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
|
| 26 |
+
print("[optimize_pipeline_] Text encoder quantized")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
@spaces.GPU(duration=1500)
|
| 29 |
def compile_transformer():
|
|
|
|
| 30 |
print("[compile_transformer] Loading LoRA weights")
|
| 31 |
pipeline.load_lora_weights(
|
| 32 |
"DeepBeepMeep/Wan2.2",
|
|
|
|
| 41 |
)
|
| 42 |
pipeline.set_adapters(["lightning", "lightning_2"], adapter_weights=[1.0, 1.0])
|
| 43 |
|
|
|
|
| 44 |
print("[compile_transformer] Fusing LoRA weights")
|
| 45 |
pipeline.fuse_lora(adapter_names=["lightning"], lora_scale=3.0, components=["transformer"])
|
| 46 |
pipeline.fuse_lora(adapter_names=["lightning_2"], lora_scale=1.0, components=["transformer_2"])
|
| 47 |
pipeline.unload_lora_weights()
|
| 48 |
|
| 49 |
+
print("[compile_transformer] Running dummy forward pass to capture component call")
|
|
|
|
| 50 |
with torch.inference_mode():
|
| 51 |
with capture_component_call(pipeline, 'transformer') as call:
|
| 52 |
pipeline(*args, **kwargs)
|
| 53 |
|
| 54 |
+
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
|
| 55 |
+
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
|
| 56 |
|
| 57 |
+
print("[compile_transformer] Quantizing transformers with Float8DynamicActivationFloat8WeightConfig")
|
| 58 |
+
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
| 59 |
+
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
|
| 60 |
|
| 61 |
+
hidden_states: torch.Tensor = call.kwargs['hidden_states']
|
| 62 |
+
hidden_states_transposed = hidden_states.transpose(-1, -2).contiguous()
|
|
|
|
| 63 |
|
| 64 |
+
if hidden_states.shape[-1] > hidden_states.shape[-2]:
|
| 65 |
+
hidden_states_landscape = hidden_states
|
| 66 |
+
hidden_states_portrait = hidden_states_transposed
|
| 67 |
+
else:
|
| 68 |
+
hidden_states_landscape = hidden_states_transposed
|
| 69 |
+
hidden_states_portrait = hidden_states
|
| 70 |
+
|
| 71 |
+
print("[compile_transformer] Exporting transformer landscape model")
|
| 72 |
+
exported_landscape_1 = torch.export.export(
|
| 73 |
+
mod=pipeline.transformer,
|
| 74 |
+
args=call.args,
|
| 75 |
+
kwargs={**call.kwargs, 'hidden_states': hidden_states_landscape},
|
| 76 |
+
dynamic_shapes=dynamic_shapes,
|
| 77 |
)
|
| 78 |
+
torch.cuda.synchronize()
|
| 79 |
+
|
| 80 |
+
print("[compile_transformer] Exporting transformer portrait model")
|
| 81 |
+
exported_portrait_2 = torch.export.export(
|
| 82 |
+
mod=pipeline.transformer_2,
|
| 83 |
+
args=call.args,
|
| 84 |
+
kwargs={**call.kwargs, 'hidden_states': hidden_states_portrait},
|
| 85 |
+
dynamic_shapes=dynamic_shapes,
|
| 86 |
)
|
| 87 |
+
torch.cuda.synchronize()
|
| 88 |
+
|
| 89 |
+
print("[compile_transformer] Compiling models with AoT compilation")
|
| 90 |
+
compiled_landscape_1 = aoti_compile(exported_landscape_1, INDUCTOR_CONFIGS)
|
| 91 |
+
compiled_portrait_2 = aoti_compile(exported_portrait_2, INDUCTOR_CONFIGS)
|
| 92 |
|
| 93 |
+
compiled_landscape_2 = ZeroGPUCompiledModel(compiled_landscape_1.archive_file, compiled_portrait_2.weights)
|
| 94 |
+
compiled_portrait_1 = ZeroGPUCompiledModel(compiled_portrait_2.archive_file, compiled_landscape_1.weights)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
print("[compile_transformer] Compilation done")
|
| 97 |
+
return compiled_landscape_1, compiled_landscape_2, compiled_portrait_1, compiled_portrait_2
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
cl1, cl2, cp1, cp2 = compile_transformer()
|
|
|
|
| 100 |
|
| 101 |
+
def combined_transformer_1(*args, **kwargs):
|
| 102 |
+
hidden_states: torch.Tensor = kwargs['hidden_states']
|
| 103 |
+
if hidden_states.shape[-1] > hidden_states.shape[-2]:
|
| 104 |
+
return cl1(*args, **kwargs)
|
| 105 |
+
else:
|
| 106 |
+
return cp1(*args, **kwargs)
|
| 107 |
|
| 108 |
+
def combined_transformer_2(*args, **kwargs):
|
| 109 |
+
hidden_states: torch.Tensor = kwargs['hidden_states']
|
| 110 |
+
if hidden_states.shape[-1] > hidden_states.shape[-2]:
|
| 111 |
+
return cl2(*args, **kwargs)
|
| 112 |
+
else:
|
| 113 |
+
return cp2(*args, **kwargs)
|
| 114 |
|
| 115 |
+
pipeline.transformer.forward = combined_transformer_1
|
| 116 |
+
drain_module_parameters(pipeline.transformer)
|
| 117 |
+
pipeline.transformer_2.forward = combined_transformer_2
|
| 118 |
+
drain_module_parameters(pipeline.transformer_2)
|
| 119 |
|
| 120 |
+
print("[optimize_pipeline_] Optimization complete")
|