Spaces:
Running
Running
Update flux_train_ui.py
Browse files- flux_train_ui.py +36 -47
flux_train_ui.py
CHANGED
|
@@ -23,17 +23,6 @@ import uuid
|
|
| 23 |
from slugify import slugify
|
| 24 |
import gradio as gr # Assuming gr is from gradio for error/warning handling
|
| 25 |
|
| 26 |
-
os.makedirs("tmp", exist_ok=True)
|
| 27 |
-
# Configure logging
|
| 28 |
-
logging.basicConfig(
|
| 29 |
-
level=logging.DEBUG,
|
| 30 |
-
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 31 |
-
handlers=[
|
| 32 |
-
logging.StreamHandler(), # Output to console
|
| 33 |
-
logging.FileHandler('tmp/training.log') # Save logs to a file
|
| 34 |
-
]
|
| 35 |
-
)
|
| 36 |
-
logger = logging.getLogger(__name__)
|
| 37 |
|
| 38 |
sys.path.insert(0, "ai-toolkit")
|
| 39 |
from toolkit.job import get_job
|
|
@@ -190,8 +179,8 @@ def start_training(
|
|
| 190 |
use_more_advanced_options,
|
| 191 |
more_advanced_options,
|
| 192 |
):
|
| 193 |
-
|
| 194 |
-
|
| 195 |
f"steps={steps}, lr={lr}, rank={rank}, model_to_train={model_to_train}, "
|
| 196 |
f"low_vram={low_vram}, dataset_folder={dataset_folder}, "
|
| 197 |
f"sample_1={sample_1}, sample_2={sample_2}, sample_3={sample_3}, "
|
|
@@ -199,44 +188,44 @@ def start_training(
|
|
| 199 |
f"more_advanced_options={more_advanced_options}")
|
| 200 |
|
| 201 |
push_to_hub = True
|
| 202 |
-
|
| 203 |
if not lora_name:
|
| 204 |
-
|
| 205 |
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
|
| 206 |
|
| 207 |
# Check Hugging Face permissions
|
| 208 |
try:
|
| 209 |
user_info = whoami()
|
| 210 |
-
|
| 211 |
if user_info["auth"]["accessToken"]["role"] == "write" or \
|
| 212 |
"repo.edit" in user_info["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]:
|
| 213 |
-
|
| 214 |
else:
|
| 215 |
push_to_hub = False
|
| 216 |
-
|
| 217 |
gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
|
| 218 |
except Exception as e:
|
| 219 |
push_to_hub = False
|
| 220 |
-
|
| 221 |
gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
|
| 222 |
|
| 223 |
-
|
| 224 |
slugged_lora_name = slugify(lora_name)
|
| 225 |
-
|
| 226 |
|
| 227 |
# Load the default config
|
| 228 |
config_path_default = "config/examples/train_lora_flux_24gb.yaml"
|
| 229 |
-
|
| 230 |
try:
|
| 231 |
with open(config_path_default, "r") as f:
|
| 232 |
config = yaml.safe_load(f)
|
| 233 |
-
|
| 234 |
except Exception as e:
|
| 235 |
-
|
| 236 |
raise
|
| 237 |
|
| 238 |
# Update the config with user inputs
|
| 239 |
-
|
| 240 |
try:
|
| 241 |
config["config"]["name"] = slugged_lora_name
|
| 242 |
config["config"]["process"][0]["model"]["low_vram"] = low_vram
|
|
@@ -247,31 +236,31 @@ def start_training(
|
|
| 247 |
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
|
| 248 |
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
|
| 249 |
config["config"]["process"][0]["save"]["push_to_hub"] = push_to_hub
|
| 250 |
-
|
| 251 |
f"lr={lr}, rank={rank}, dataset_folder={dataset_folder}, push_to_hub={push_to_hub}")
|
| 252 |
except KeyError as e:
|
| 253 |
-
|
| 254 |
raise
|
| 255 |
except Exception as e:
|
| 256 |
-
|
| 257 |
raise
|
| 258 |
|
| 259 |
# Handle Hugging Face repository settings
|
| 260 |
if push_to_hub:
|
| 261 |
try:
|
| 262 |
username = whoami()["name"]
|
| 263 |
-
|
| 264 |
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
|
| 265 |
config["config"]["process"][0]["save"]["hf_private"] = True
|
| 266 |
-
|
| 267 |
except Exception as e:
|
| 268 |
-
|
| 269 |
raise gr.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?")
|
| 270 |
|
| 271 |
# Handle concept sentence
|
| 272 |
if concept_sentence:
|
| 273 |
config["config"]["process"][0]["trigger_word"] = concept_sentence
|
| 274 |
-
|
| 275 |
|
| 276 |
# Handle sampling prompts
|
| 277 |
if sample_1 or sample_2 or sample_3:
|
|
@@ -285,56 +274,56 @@ def start_training(
|
|
| 285 |
config["config"]["process"][0]["sample"]["prompts"].append(sample_2)
|
| 286 |
if sample_3:
|
| 287 |
config["config"]["process"][0]["sample"]["prompts"].append(sample_3)
|
| 288 |
-
|
| 289 |
else:
|
| 290 |
config["config"]["process"][0]["train"]["disable_sampling"] = True
|
| 291 |
-
|
| 292 |
|
| 293 |
# Handle model selection
|
| 294 |
if model_to_train == "schnell":
|
| 295 |
config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-schnell"
|
| 296 |
config["config"]["process"][0]["model"]["assistant_lora_path"] = "ostris/FLUX.1-schnell-training-adapter"
|
| 297 |
config["config"]["process"][0]["sample"]["sample_steps"] = 4
|
| 298 |
-
|
| 299 |
|
| 300 |
# Handle advanced options
|
| 301 |
if use_more_advanced_options:
|
| 302 |
try:
|
| 303 |
more_advanced_options_dict = yaml.safe_load(more_advanced_options)
|
| 304 |
-
|
| 305 |
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict)
|
| 306 |
-
|
| 307 |
except Exception as e:
|
| 308 |
-
|
| 309 |
raise
|
| 310 |
|
| 311 |
# Save the updated config
|
| 312 |
-
|
| 313 |
random_config_name = str(uuid.uuid4())
|
| 314 |
os.makedirs("tmp", exist_ok=True)
|
| 315 |
config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml"
|
| 316 |
try:
|
| 317 |
with open(config_path, "w") as f:
|
| 318 |
yaml.dump(config, f)
|
| 319 |
-
|
| 320 |
except Exception as e:
|
| 321 |
-
|
| 322 |
raise
|
| 323 |
|
| 324 |
# Run the training job
|
| 325 |
-
|
| 326 |
try:
|
| 327 |
job = get_job(config_path)
|
| 328 |
-
|
| 329 |
job.run()
|
| 330 |
-
|
| 331 |
job.cleanup()
|
| 332 |
-
|
| 333 |
except Exception as e:
|
| 334 |
-
|
| 335 |
raise
|
| 336 |
|
| 337 |
-
|
| 338 |
return f"Training completed successfully. Model saved as {slugged_lora_name}"
|
| 339 |
|
| 340 |
|
|
|
|
| 23 |
from slugify import slugify
|
| 24 |
import gradio as gr # Assuming gr is from gradio for error/warning handling
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
sys.path.insert(0, "ai-toolkit")
|
| 28 |
from toolkit.job import get_job
|
|
|
|
| 179 |
use_more_advanced_options,
|
| 180 |
more_advanced_options,
|
| 181 |
):
|
| 182 |
+
print("Starting training process")
|
| 183 |
+
print(f"Input parameters: lora_name={lora_name}, concept_sentence={concept_sentence}, "
|
| 184 |
f"steps={steps}, lr={lr}, rank={rank}, model_to_train={model_to_train}, "
|
| 185 |
f"low_vram={low_vram}, dataset_folder={dataset_folder}, "
|
| 186 |
f"sample_1={sample_1}, sample_2={sample_2}, sample_3={sample_3}, "
|
|
|
|
| 188 |
f"more_advanced_options={more_advanced_options}")
|
| 189 |
|
| 190 |
push_to_hub = True
|
| 191 |
+
print("Checking LoRA name")
|
| 192 |
if not lora_name:
|
| 193 |
+
print("LoRA name is empty or None")
|
| 194 |
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
|
| 195 |
|
| 196 |
# Check Hugging Face permissions
|
| 197 |
try:
|
| 198 |
user_info = whoami()
|
| 199 |
+
print(f"Hugging Face user info: {user_info}")
|
| 200 |
if user_info["auth"]["accessToken"]["role"] == "write" or \
|
| 201 |
"repo.edit" in user_info["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]:
|
| 202 |
+
print(f"Starting training locally for user: {user_info['name']}. LoRA will be available locally and on Hugging Face.")
|
| 203 |
else:
|
| 204 |
push_to_hub = False
|
| 205 |
+
print("No write access to Hugging Face. Training locally only.")
|
| 206 |
gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
|
| 207 |
except Exception as e:
|
| 208 |
push_to_hub = False
|
| 209 |
+
print(f"Error checking Hugging Face permissions: {str(e)}")
|
| 210 |
gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
|
| 211 |
|
| 212 |
+
print("Training started")
|
| 213 |
slugged_lora_name = slugify(lora_name)
|
| 214 |
+
print(f"Slugged LoRA name: {slugged_lora_name}")
|
| 215 |
|
| 216 |
# Load the default config
|
| 217 |
config_path_default = "config/examples/train_lora_flux_24gb.yaml"
|
| 218 |
+
print(f"Loading default config from: {config_path_default}")
|
| 219 |
try:
|
| 220 |
with open(config_path_default, "r") as f:
|
| 221 |
config = yaml.safe_load(f)
|
| 222 |
+
print(f"Loaded config: {config}")
|
| 223 |
except Exception as e:
|
| 224 |
+
print(f"Failed to load config from {config_path_default}: {str(e)}")
|
| 225 |
raise
|
| 226 |
|
| 227 |
# Update the config with user inputs
|
| 228 |
+
print("Updating config with user inputs")
|
| 229 |
try:
|
| 230 |
config["config"]["name"] = slugged_lora_name
|
| 231 |
config["config"]["process"][0]["model"]["low_vram"] = low_vram
|
|
|
|
| 236 |
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
|
| 237 |
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
|
| 238 |
config["config"]["process"][0]["save"]["push_to_hub"] = push_to_hub
|
| 239 |
+
print(f"Updated config fields: name={slugged_lora_name}, low_vram={low_vram}, steps={steps}, "
|
| 240 |
f"lr={lr}, rank={rank}, dataset_folder={dataset_folder}, push_to_hub={push_to_hub}")
|
| 241 |
except KeyError as e:
|
| 242 |
+
print(f"Config structure error: Missing key {str(e)}")
|
| 243 |
raise
|
| 244 |
except Exception as e:
|
| 245 |
+
print(f"Error updating config: {str(e)}")
|
| 246 |
raise
|
| 247 |
|
| 248 |
# Handle Hugging Face repository settings
|
| 249 |
if push_to_hub:
|
| 250 |
try:
|
| 251 |
username = whoami()["name"]
|
| 252 |
+
print(f"Hugging Face username: {username}")
|
| 253 |
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
|
| 254 |
config["config"]["process"][0]["save"]["hf_private"] = True
|
| 255 |
+
print(f"Set Hugging Face repo: {username}/{slugged_lora_name}")
|
| 256 |
except Exception as e:
|
| 257 |
+
print(f"Error retrieving Hugging Face username: {str(e)}")
|
| 258 |
raise gr.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?")
|
| 259 |
|
| 260 |
# Handle concept sentence
|
| 261 |
if concept_sentence:
|
| 262 |
config["config"]["process"][0]["trigger_word"] = concept_sentence
|
| 263 |
+
print(f"Set trigger_word: {concept_sentence}")
|
| 264 |
|
| 265 |
# Handle sampling prompts
|
| 266 |
if sample_1 or sample_2 or sample_3:
|
|
|
|
| 274 |
config["config"]["process"][0]["sample"]["prompts"].append(sample_2)
|
| 275 |
if sample_3:
|
| 276 |
config["config"]["process"][0]["sample"]["prompts"].append(sample_3)
|
| 277 |
+
print(f"Sampling enabled with prompts: {config['config']['process'][0]['sample']['prompts']}")
|
| 278 |
else:
|
| 279 |
config["config"]["process"][0]["train"]["disable_sampling"] = True
|
| 280 |
+
print("Sampling disabled")
|
| 281 |
|
| 282 |
# Handle model selection
|
| 283 |
if model_to_train == "schnell":
|
| 284 |
config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-schnell"
|
| 285 |
config["config"]["process"][0]["model"]["assistant_lora_path"] = "ostris/FLUX.1-schnell-training-adapter"
|
| 286 |
config["config"]["process"][0]["sample"]["sample_steps"] = 4
|
| 287 |
+
print("Using schnell model configuration")
|
| 288 |
|
| 289 |
# Handle advanced options
|
| 290 |
if use_more_advanced_options:
|
| 291 |
try:
|
| 292 |
more_advanced_options_dict = yaml.safe_load(more_advanced_options)
|
| 293 |
+
print(f"Advanced options parsed: {more_advanced_options_dict}")
|
| 294 |
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict)
|
| 295 |
+
print(f"Config after advanced options update: {config}")
|
| 296 |
except Exception as e:
|
| 297 |
+
print(f"Error parsing or applying advanced options: {str(e)}")
|
| 298 |
raise
|
| 299 |
|
| 300 |
# Save the updated config
|
| 301 |
+
print("Saving updated config")
|
| 302 |
random_config_name = str(uuid.uuid4())
|
| 303 |
os.makedirs("tmp", exist_ok=True)
|
| 304 |
config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml"
|
| 305 |
try:
|
| 306 |
with open(config_path, "w") as f:
|
| 307 |
yaml.dump(config, f)
|
| 308 |
+
print(f"Config saved to: {config_path}")
|
| 309 |
except Exception as e:
|
| 310 |
+
print(f"Error saving config to {config_path}: {str(e)}")
|
| 311 |
raise
|
| 312 |
|
| 313 |
# Run the training job
|
| 314 |
+
print(f"Starting training job with config: {config_path}")
|
| 315 |
try:
|
| 316 |
job = get_job(config_path)
|
| 317 |
+
print("Job object created successfully")
|
| 318 |
job.run()
|
| 319 |
+
print("Training job completed")
|
| 320 |
job.cleanup()
|
| 321 |
+
print("Job cleanup completed")
|
| 322 |
except Exception as e:
|
| 323 |
+
print(f"Error during training job execution: {str(e)}")
|
| 324 |
raise
|
| 325 |
|
| 326 |
+
print(f"Training completed successfully. Model saved as {slugged_lora_name}")
|
| 327 |
return f"Training completed successfully. Model saved as {slugged_lora_name}"
|
| 328 |
|
| 329 |
|