Spaces:
Running
Running
| import glob | |
| import os | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| from safetensors.torch import load_file, save_file | |
| from toolkit.losses import get_gradient_penalty | |
| from toolkit.metadata import get_meta_for_safetensors | |
| from toolkit.optimizer import get_optimizer | |
| from toolkit.train_tools import get_torch_dtype | |
| from typing import TYPE_CHECKING, Union | |
| class MeanReduce(nn.Module): | |
| def __init__(self): | |
| super(MeanReduce, self).__init__() | |
| def forward(self, inputs): | |
| return torch.mean(inputs, dim=(1, 2, 3), keepdim=True) | |
| class Vgg19Critic(nn.Module): | |
| def __init__(self): | |
| # vgg19 input (bs, 3, 512, 512) | |
| # pool1 (bs, 64, 256, 256) | |
| # pool2 (bs, 128, 128, 128) | |
| # pool3 (bs, 256, 64, 64) | |
| # pool4 (bs, 512, 32, 32) <- take this input | |
| super(Vgg19Critic, self).__init__() | |
| self.main = nn.Sequential( | |
| # input (bs, 512, 32, 32) | |
| nn.Conv2d(512, 1024, kernel_size=3, stride=2, padding=1), | |
| nn.LeakyReLU(0.2), # (bs, 512, 16, 16) | |
| nn.Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1), | |
| nn.LeakyReLU(0.2), # (bs, 512, 8, 8) | |
| nn.Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1), | |
| # (bs, 1, 4, 4) | |
| MeanReduce(), # (bs, 1, 1, 1) | |
| nn.Flatten(), # (bs, 1) | |
| # nn.Flatten(), # (128*8*8) = 8192 | |
| # nn.Linear(128 * 8 * 8, 1) | |
| ) | |
| def forward(self, inputs): | |
| return self.main(inputs) | |
| if TYPE_CHECKING: | |
| from jobs.process.TrainVAEProcess import TrainVAEProcess | |
| from jobs.process.TrainESRGANProcess import TrainESRGANProcess | |
| class Critic: | |
| process: Union['TrainVAEProcess', 'TrainESRGANProcess'] | |
| def __init__( | |
| self, | |
| learning_rate=1e-5, | |
| device='cpu', | |
| optimizer='adam', | |
| num_critic_per_gen=1, | |
| dtype='float32', | |
| lambda_gp=10, | |
| start_step=0, | |
| warmup_steps=1000, | |
| process=None, | |
| optimizer_params=None, | |
| ): | |
| self.learning_rate = learning_rate | |
| self.device = device | |
| self.optimizer_type = optimizer | |
| self.num_critic_per_gen = num_critic_per_gen | |
| self.dtype = dtype | |
| self.torch_dtype = get_torch_dtype(self.dtype) | |
| self.process = process | |
| self.model = None | |
| self.optimizer = None | |
| self.scheduler = None | |
| self.warmup_steps = warmup_steps | |
| self.start_step = start_step | |
| self.lambda_gp = lambda_gp | |
| if optimizer_params is None: | |
| optimizer_params = {} | |
| self.optimizer_params = optimizer_params | |
| self.print = self.process.print | |
| print(f" Critic config: {self.__dict__}") | |
| def setup(self): | |
| self.model = Vgg19Critic().to(self.device, dtype=self.torch_dtype) | |
| self.load_weights() | |
| self.model.train() | |
| self.model.requires_grad_(True) | |
| params = self.model.parameters() | |
| self.optimizer = get_optimizer(params, self.optimizer_type, self.learning_rate, | |
| optimizer_params=self.optimizer_params) | |
| self.scheduler = torch.optim.lr_scheduler.ConstantLR( | |
| self.optimizer, | |
| total_iters=self.process.max_steps * self.num_critic_per_gen, | |
| factor=1, | |
| verbose=False | |
| ) | |
| def load_weights(self): | |
| path_to_load = None | |
| self.print(f"Critic: Looking for latest checkpoint in {self.process.save_root}") | |
| files = glob.glob(os.path.join(self.process.save_root, f"CRITIC_{self.process.job.name}*.safetensors")) | |
| if files and len(files) > 0: | |
| latest_file = max(files, key=os.path.getmtime) | |
| print(f" - Latest checkpoint is: {latest_file}") | |
| path_to_load = latest_file | |
| else: | |
| self.print(f" - No checkpoint found, starting from scratch") | |
| if path_to_load: | |
| self.model.load_state_dict(load_file(path_to_load)) | |
| def save(self, step=None): | |
| self.process.update_training_metadata() | |
| save_meta = get_meta_for_safetensors(self.process.meta, self.process.job.name) | |
| step_num = '' | |
| if step is not None: | |
| # zeropad 9 digits | |
| step_num = f"_{str(step).zfill(9)}" | |
| save_path = os.path.join(self.process.save_root, f"CRITIC_{self.process.job.name}{step_num}.safetensors") | |
| save_file(self.model.state_dict(), save_path, save_meta) | |
| self.print(f"Saved critic to {save_path}") | |
| def get_critic_loss(self, vgg_output): | |
| if self.start_step > self.process.step_num: | |
| return torch.tensor(0.0, dtype=self.torch_dtype, device=self.device) | |
| warmup_scaler = 1.0 | |
| # we need a warmup when we come on of 1000 steps | |
| # we want to scale the loss by 0.0 at self.start_step steps and 1.0 at self.start_step + warmup_steps | |
| if self.process.step_num < self.start_step + self.warmup_steps: | |
| warmup_scaler = (self.process.step_num - self.start_step) / self.warmup_steps | |
| # set model to not train for generator loss | |
| self.model.eval() | |
| self.model.requires_grad_(False) | |
| vgg_pred, vgg_target = torch.chunk(vgg_output, 2, dim=0) | |
| # run model | |
| stacked_output = self.model(vgg_pred) | |
| return (-torch.mean(stacked_output)) * warmup_scaler | |
| def step(self, vgg_output): | |
| # train critic here | |
| self.model.train() | |
| self.model.requires_grad_(True) | |
| self.optimizer.zero_grad() | |
| critic_losses = [] | |
| inputs = vgg_output.detach() | |
| inputs = inputs.to(self.device, dtype=self.torch_dtype) | |
| self.optimizer.zero_grad() | |
| vgg_pred, vgg_target = torch.chunk(inputs, 2, dim=0) | |
| stacked_output = self.model(inputs).float() | |
| out_pred, out_target = torch.chunk(stacked_output, 2, dim=0) | |
| # Compute gradient penalty | |
| gradient_penalty = get_gradient_penalty(self.model, vgg_target, vgg_pred, self.device) | |
| # Compute WGAN-GP critic loss | |
| critic_loss = -(torch.mean(out_target) - torch.mean(out_pred)) + self.lambda_gp * gradient_penalty | |
| critic_loss.backward() | |
| torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0) | |
| self.optimizer.step() | |
| self.scheduler.step() | |
| critic_losses.append(critic_loss.item()) | |
| # avg loss | |
| loss = np.mean(critic_losses) | |
| return loss | |
| def get_lr(self): | |
| if self.optimizer_type.startswith('dadaptation'): | |
| learning_rate = ( | |
| self.optimizer.param_groups[0]["d"] * | |
| self.optimizer.param_groups[0]["lr"] | |
| ) | |
| else: | |
| learning_rate = self.optimizer.param_groups[0]['lr'] | |
| return learning_rate | |