Spaces:
Running
Running
| # Copyright 2024 Alpha-VLLM Authors and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import PeftAdapterMixin | |
| from diffusers.utils import logging | |
| from diffusers.models.attention import LuminaFeedForward | |
| from diffusers.models.attention_processor import Attention | |
| from diffusers.models.embeddings import TimestepEmbedding, Timesteps, apply_rotary_emb, get_1d_rotary_pos_embed | |
| from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.normalization import LuminaLayerNormContinuous, LuminaRMSNormZero, RMSNorm | |
| import torch | |
| from torch.profiler import profile, record_function, ProfilerActivity | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| do_profile = False | |
| class Lumina2CombinedTimestepCaptionEmbedding(nn.Module): | |
| def __init__( | |
| self, | |
| hidden_size: int = 4096, | |
| cap_feat_dim: int = 2048, | |
| frequency_embedding_size: int = 256, | |
| norm_eps: float = 1e-5, | |
| ) -> None: | |
| super().__init__() | |
| self.time_proj = Timesteps( | |
| num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0 | |
| ) | |
| self.timestep_embedder = TimestepEmbedding( | |
| in_channels=frequency_embedding_size, time_embed_dim=min(hidden_size, 1024) | |
| ) | |
| self.caption_embedder = nn.Sequential( | |
| RMSNorm(cap_feat_dim, eps=norm_eps), nn.Linear(cap_feat_dim, hidden_size, bias=True) | |
| ) | |
| def forward( | |
| self, hidden_states: torch.Tensor, timestep: torch.Tensor, encoder_hidden_states: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| timestep_proj = self.time_proj(timestep).type_as(hidden_states) | |
| time_embed = self.timestep_embedder(timestep_proj) | |
| caption_embed = self.caption_embedder(encoder_hidden_states) | |
| return time_embed, caption_embed | |
| class Lumina2AttnProcessor2_0: | |
| r""" | |
| Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is | |
| used in the Lumina2Transformer2DModel model. It applies normalization and RoPE on query and key vectors. | |
| """ | |
| def __init__(self): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| image_rotary_emb: Optional[torch.Tensor] = None, | |
| base_sequence_length: Optional[int] = None, | |
| ) -> torch.Tensor: | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| # Get Query-Key-Value Pair | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(encoder_hidden_states) | |
| value = attn.to_v(encoder_hidden_states) | |
| query_dim = query.shape[-1] | |
| inner_dim = key.shape[-1] | |
| head_dim = query_dim // attn.heads | |
| dtype = query.dtype | |
| # Get key-value heads | |
| kv_heads = inner_dim // head_dim | |
| query = query.view(batch_size, -1, attn.heads, head_dim) | |
| key = key.view(batch_size, -1, kv_heads, head_dim) | |
| value = value.view(batch_size, -1, kv_heads, head_dim) | |
| # Apply Query-Key Norm if needed | |
| if attn.norm_q is not None: | |
| query = attn.norm_q(query) | |
| if attn.norm_k is not None: | |
| key = attn.norm_k(key) | |
| # Apply RoPE if needed | |
| if image_rotary_emb is not None: | |
| query = apply_rotary_emb(query, image_rotary_emb, use_real=False) | |
| key = apply_rotary_emb(key, image_rotary_emb, use_real=False) | |
| query, key = query.to(dtype), key.to(dtype) | |
| # Apply proportional attention if true | |
| if base_sequence_length is not None: | |
| softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale | |
| else: | |
| softmax_scale = attn.scale | |
| # perform Grouped-qurey Attention (GQA) | |
| n_rep = attn.heads // kv_heads | |
| if n_rep >= 1: | |
| key = key.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) | |
| value = value.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) | |
| # scaled_dot_product_attention expects attention_mask shape to be | |
| # (batch, heads, source_length, target_length) | |
| attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1) | |
| attention_mask = attention_mask.expand(-1, attn.heads, sequence_length, -1) | |
| query = query.transpose(1, 2) | |
| key = key.transpose(1, 2) | |
| value = value.transpose(1, 2) | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, scale=softmax_scale | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.type_as(query) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| hidden_states = attn.to_out[1](hidden_states) | |
| return hidden_states | |
| class Lumina2TransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| num_kv_heads: int, | |
| multiple_of: int, | |
| ffn_dim_multiplier: float, | |
| norm_eps: float, | |
| modulation: bool = True, | |
| ) -> None: | |
| super().__init__() | |
| self.head_dim = dim // num_attention_heads | |
| self.modulation = modulation | |
| self.attn = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=None, | |
| dim_head=dim // num_attention_heads, | |
| qk_norm="rms_norm", | |
| heads=num_attention_heads, | |
| kv_heads=num_kv_heads, | |
| eps=1e-5, | |
| bias=False, | |
| out_bias=False, | |
| processor=Lumina2AttnProcessor2_0(), | |
| ) | |
| self.feed_forward = LuminaFeedForward( | |
| dim=dim, | |
| inner_dim=4 * dim, | |
| multiple_of=multiple_of, | |
| ffn_dim_multiplier=ffn_dim_multiplier, | |
| ) | |
| if modulation: | |
| self.norm1 = LuminaRMSNormZero( | |
| embedding_dim=dim, | |
| norm_eps=norm_eps, | |
| norm_elementwise_affine=True, | |
| ) | |
| else: | |
| self.norm1 = RMSNorm(dim, eps=norm_eps) | |
| self.ffn_norm1 = RMSNorm(dim, eps=norm_eps) | |
| self.norm2 = RMSNorm(dim, eps=norm_eps) | |
| self.ffn_norm2 = RMSNorm(dim, eps=norm_eps) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| image_rotary_emb: torch.Tensor, | |
| temb: Optional[torch.Tensor] = None, | |
| ) -> torch.Tensor: | |
| if self.modulation: | |
| norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) | |
| attn_output = self.attn( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_hidden_states, | |
| attention_mask=attention_mask, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output) | |
| mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1))) | |
| hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output) | |
| else: | |
| norm_hidden_states = self.norm1(hidden_states) | |
| attn_output = self.attn( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_hidden_states, | |
| attention_mask=attention_mask, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| hidden_states = hidden_states + self.norm2(attn_output) | |
| mlp_output = self.feed_forward(self.ffn_norm1(hidden_states)) | |
| hidden_states = hidden_states + self.ffn_norm2(mlp_output) | |
| return hidden_states | |
| class Lumina2RotaryPosEmbed(nn.Module): | |
| def __init__(self, theta: int, axes_dim: List[int], axes_lens: List[int] = (300, 512, 512), patch_size: int = 2): | |
| super().__init__() | |
| self.theta = theta | |
| self.axes_dim = axes_dim | |
| self.axes_lens = axes_lens | |
| self.patch_size = patch_size | |
| self.freqs_cis = self._precompute_freqs_cis(axes_dim, axes_lens, theta) | |
| def _precompute_freqs_cis(self, axes_dim: List[int], axes_lens: List[int], theta: int) -> List[torch.Tensor]: | |
| freqs_cis = [] | |
| for i, (d, e) in enumerate(zip(axes_dim, axes_lens)): | |
| emb = get_1d_rotary_pos_embed(d, e, theta=self.theta, freqs_dtype=torch.float64) | |
| freqs_cis.append(emb) | |
| return freqs_cis | |
| def _get_freqs_cis(self, ids: torch.Tensor) -> torch.Tensor: | |
| result = [] | |
| for i in range(len(self.axes_dim)): | |
| freqs = self.freqs_cis[i].to(ids.device) | |
| index = ids[:, :, i : i + 1].repeat(1, 1, freqs.shape[-1]).to(torch.int64) | |
| result.append(torch.gather(freqs.unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index)) | |
| return torch.cat(result, dim=-1) | |
| def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor): | |
| batch_size = len(hidden_states) | |
| p_h = p_w = self.patch_size | |
| device = hidden_states[0].device | |
| l_effective_cap_len = attention_mask.sum(dim=1).tolist() | |
| # TODO: this should probably be refactored because all subtensors of hidden_states will be of same shape | |
| img_sizes = [(img.size(1), img.size(2)) for img in hidden_states] | |
| l_effective_img_len = [(H // p_h) * (W // p_w) for (H, W) in img_sizes] | |
| max_seq_len = max((cap_len + img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len))) | |
| max_img_len = max(l_effective_img_len) | |
| position_ids = torch.zeros(batch_size, max_seq_len, 3, dtype=torch.int32, device=device) | |
| for i in range(batch_size): | |
| cap_len = l_effective_cap_len[i] | |
| img_len = l_effective_img_len[i] | |
| H, W = img_sizes[i] | |
| H_tokens, W_tokens = H // p_h, W // p_w | |
| assert H_tokens * W_tokens == img_len | |
| position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device) | |
| position_ids[i, cap_len : cap_len + img_len, 0] = cap_len | |
| row_ids = ( | |
| torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten() | |
| ) | |
| col_ids = ( | |
| torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten() | |
| ) | |
| position_ids[i, cap_len : cap_len + img_len, 1] = row_ids | |
| position_ids[i, cap_len : cap_len + img_len, 2] = col_ids | |
| freqs_cis = self._get_freqs_cis(position_ids) | |
| cap_freqs_cis_shape = list(freqs_cis.shape) | |
| cap_freqs_cis_shape[1] = attention_mask.shape[1] | |
| cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype) | |
| img_freqs_cis_shape = list(freqs_cis.shape) | |
| img_freqs_cis_shape[1] = max_img_len | |
| img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype) | |
| for i in range(batch_size): | |
| cap_len = l_effective_cap_len[i] | |
| img_len = l_effective_img_len[i] | |
| cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len] | |
| img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len : cap_len + img_len] | |
| flat_hidden_states = [] | |
| for i in range(batch_size): | |
| img = hidden_states[i] | |
| C, H, W = img.size() | |
| img = img.view(C, H // p_h, p_h, W // p_w, p_w).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1) | |
| flat_hidden_states.append(img) | |
| hidden_states = flat_hidden_states | |
| padded_img_embed = torch.zeros( | |
| batch_size, max_img_len, hidden_states[0].shape[-1], device=device, dtype=hidden_states[0].dtype | |
| ) | |
| padded_img_mask = torch.zeros(batch_size, max_img_len, dtype=torch.bool, device=device) | |
| for i in range(batch_size): | |
| padded_img_embed[i, : l_effective_img_len[i]] = hidden_states[i] | |
| padded_img_mask[i, : l_effective_img_len[i]] = True | |
| return ( | |
| padded_img_embed, | |
| padded_img_mask, | |
| img_sizes, | |
| l_effective_cap_len, | |
| l_effective_img_len, | |
| freqs_cis, | |
| cap_freqs_cis, | |
| img_freqs_cis, | |
| max_seq_len, | |
| ) | |
| class Lumina2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): | |
| r""" | |
| Lumina2NextDiT: Diffusion model with a Transformer backbone. | |
| Parameters: | |
| sample_size (`int`): The width of the latent images. This is fixed during training since | |
| it is used to learn a number of position embeddings. | |
| patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2): | |
| The size of each patch in the image. This parameter defines the resolution of patches fed into the model. | |
| in_channels (`int`, *optional*, defaults to 4): | |
| The number of input channels for the model. Typically, this matches the number of channels in the input | |
| images. | |
| hidden_size (`int`, *optional*, defaults to 4096): | |
| The dimensionality of the hidden layers in the model. This parameter determines the width of the model's | |
| hidden representations. | |
| num_layers (`int`, *optional*, default to 32): | |
| The number of layers in the model. This defines the depth of the neural network. | |
| num_attention_heads (`int`, *optional*, defaults to 32): | |
| The number of attention heads in each attention layer. This parameter specifies how many separate attention | |
| mechanisms are used. | |
| num_kv_heads (`int`, *optional*, defaults to 8): | |
| The number of key-value heads in the attention mechanism, if different from the number of attention heads. | |
| If None, it defaults to num_attention_heads. | |
| multiple_of (`int`, *optional*, defaults to 256): | |
| A factor that the hidden size should be a multiple of. This can help optimize certain hardware | |
| configurations. | |
| ffn_dim_multiplier (`float`, *optional*): | |
| A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on | |
| the model configuration. | |
| norm_eps (`float`, *optional*, defaults to 1e-5): | |
| A small value added to the denominator for numerical stability in normalization layers. | |
| scaling_factor (`float`, *optional*, defaults to 1.0): | |
| A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the | |
| overall scale of the model's operations. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| _no_split_modules = ["Lumina2TransformerBlock"] | |
| _skip_layerwise_casting_patterns = ["x_embedder", "norm"] | |
| def __init__( | |
| self, | |
| sample_size: int = 128, | |
| patch_size: int = 2, | |
| in_channels: int = 16, | |
| out_channels: Optional[int] = None, | |
| hidden_size: int = 2304, | |
| num_layers: int = 26, | |
| num_refiner_layers: int = 2, | |
| num_attention_heads: int = 24, | |
| num_kv_heads: int = 8, | |
| multiple_of: int = 256, | |
| ffn_dim_multiplier: Optional[float] = None, | |
| norm_eps: float = 1e-5, | |
| scaling_factor: float = 1.0, | |
| axes_dim_rope: Tuple[int, int, int] = (32, 32, 32), | |
| axes_lens: Tuple[int, int, int] = (300, 512, 512), | |
| cap_feat_dim: int = 1024, | |
| ) -> None: | |
| super().__init__() | |
| self.out_channels = out_channels or in_channels | |
| # 1. Positional, patch & conditional embeddings | |
| self.rope_embedder = Lumina2RotaryPosEmbed( | |
| theta=10000, axes_dim=axes_dim_rope, axes_lens=axes_lens, patch_size=patch_size | |
| ) | |
| self.x_embedder = nn.Linear(in_features=patch_size * patch_size * in_channels, out_features=hidden_size) | |
| self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding( | |
| hidden_size=hidden_size, cap_feat_dim=cap_feat_dim, norm_eps=norm_eps | |
| ) | |
| # 2. Noise and context refinement blocks | |
| self.noise_refiner = nn.ModuleList( | |
| [ | |
| Lumina2TransformerBlock( | |
| hidden_size, | |
| num_attention_heads, | |
| num_kv_heads, | |
| multiple_of, | |
| ffn_dim_multiplier, | |
| norm_eps, | |
| modulation=True, | |
| ) | |
| for _ in range(num_refiner_layers) | |
| ] | |
| ) | |
| self.context_refiner = nn.ModuleList( | |
| [ | |
| Lumina2TransformerBlock( | |
| hidden_size, | |
| num_attention_heads, | |
| num_kv_heads, | |
| multiple_of, | |
| ffn_dim_multiplier, | |
| norm_eps, | |
| modulation=False, | |
| ) | |
| for _ in range(num_refiner_layers) | |
| ] | |
| ) | |
| # 3. Transformer blocks | |
| self.layers = nn.ModuleList( | |
| [ | |
| Lumina2TransformerBlock( | |
| hidden_size, | |
| num_attention_heads, | |
| num_kv_heads, | |
| multiple_of, | |
| ffn_dim_multiplier, | |
| norm_eps, | |
| modulation=True, | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| # 4. Output norm & projection | |
| self.norm_out = LuminaLayerNormContinuous( | |
| embedding_dim=hidden_size, | |
| conditioning_embedding_dim=min(hidden_size, 1024), | |
| elementwise_affine=False, | |
| eps=1e-6, | |
| bias=True, | |
| out_dim=patch_size * patch_size * self.out_channels, | |
| ) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| timestep: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| return_dict: bool = True, | |
| ) -> Union[torch.Tensor, Transformer2DModelOutput]: | |
| hidden_size = self.config.get("hidden_size", 2304) | |
| # pad or slice text encoder | |
| if encoder_hidden_states.shape[2] > hidden_size: | |
| encoder_hidden_states = encoder_hidden_states[:, :, :hidden_size] | |
| elif encoder_hidden_states.shape[2] < hidden_size: | |
| encoder_hidden_states = F.pad(encoder_hidden_states, (0, hidden_size - encoder_hidden_states.shape[2])) | |
| batch_size = hidden_states.size(0) | |
| if do_profile: | |
| prof = torch.profiler.profile( | |
| activities=[ | |
| torch.profiler.ProfilerActivity.CPU, | |
| torch.profiler.ProfilerActivity.CUDA, | |
| ], | |
| ) | |
| prof.start() | |
| # 1. Condition, positional & patch embedding | |
| temb, encoder_hidden_states = self.time_caption_embed(hidden_states, timestep, encoder_hidden_states) | |
| ( | |
| hidden_states, | |
| hidden_mask, | |
| hidden_sizes, | |
| encoder_hidden_len, | |
| hidden_len, | |
| joint_rotary_emb, | |
| encoder_rotary_emb, | |
| hidden_rotary_emb, | |
| max_seq_len, | |
| ) = self.rope_embedder(hidden_states, attention_mask) | |
| hidden_states = self.x_embedder(hidden_states) | |
| # 2. Context & noise refinement | |
| for layer in self.context_refiner: | |
| encoder_hidden_states = layer(encoder_hidden_states, attention_mask, encoder_rotary_emb) | |
| for layer in self.noise_refiner: | |
| hidden_states = layer(hidden_states, hidden_mask, hidden_rotary_emb, temb) | |
| # 3. Attention mask preparation | |
| mask = hidden_states.new_zeros(batch_size, max_seq_len, dtype=torch.bool) | |
| padded_hidden_states = hidden_states.new_zeros(batch_size, max_seq_len, self.config.hidden_size) | |
| for i in range(batch_size): | |
| cap_len = encoder_hidden_len[i] | |
| img_len = hidden_len[i] | |
| mask[i, : cap_len + img_len] = True | |
| padded_hidden_states[i, :cap_len] = encoder_hidden_states[i, :cap_len] | |
| padded_hidden_states[i, cap_len : cap_len + img_len] = hidden_states[i, :img_len] | |
| hidden_states = padded_hidden_states | |
| # 4. Transformer blocks | |
| for layer in self.layers: | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| hidden_states = self._gradient_checkpointing_func(layer, hidden_states, mask, joint_rotary_emb, temb) | |
| else: | |
| hidden_states = layer(hidden_states, mask, joint_rotary_emb, temb) | |
| # 5. Output norm & projection & unpatchify | |
| hidden_states = self.norm_out(hidden_states, temb) | |
| height_tokens = width_tokens = self.config.patch_size | |
| output = [] | |
| for i in range(len(hidden_sizes)): | |
| height, width = hidden_sizes[i] | |
| begin = encoder_hidden_len[i] | |
| end = begin + (height // height_tokens) * (width // width_tokens) | |
| output.append( | |
| hidden_states[i][begin:end] | |
| .view(height // height_tokens, width // width_tokens, height_tokens, width_tokens, self.out_channels) | |
| .permute(4, 0, 2, 1, 3) | |
| .flatten(3, 4) | |
| .flatten(1, 2) | |
| ) | |
| output = torch.stack(output, dim=0) | |
| if do_profile: | |
| torch.cuda.synchronize() # Make sure all CUDA ops are done | |
| prof.stop() | |
| print("\n==== Profile Results ====") | |
| print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=1000)) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer2DModelOutput(sample=output) |