|
import math |
|
from typing import List |
|
import torch |
|
from toolkit.optimizers.optimizer_utils import copy_stochastic, stochastic_grad_accummulation |
|
from optimum.quanto import QBytesTensor |
|
import random |
|
|
|
|
|
class Adafactor(torch.optim.Optimizer): |
|
""" |
|
Adafactor implementation with stochastic rounding accumulation and stochastic rounding on apply. |
|
Modified from transformers Adafactor implementation to support stochastic rounding accumulation and apply. |
|
|
|
AdaFactor pytorch implementation can be used as a drop in replacement for Adam original fairseq code: |
|
https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py |
|
|
|
Paper: *Adafactor: Adaptive Learning Rates with Sublinear Memory Cost* https://arxiv.org/abs/1804.04235 Note that |
|
this optimizer internally adjusts the learning rate depending on the `scale_parameter`, `relative_step` and |
|
`warmup_init` options. To use a manual (external) learning rate schedule you should set `scale_parameter=False` and |
|
`relative_step=False`. |
|
|
|
Arguments: |
|
params (`Iterable[nn.parameter.Parameter]`): |
|
Iterable of parameters to optimize or dictionaries defining parameter groups. |
|
lr (`float`, *optional*): |
|
The external learning rate. |
|
eps (`Tuple[float, float]`, *optional*, defaults to `(1e-30, 0.001)`): |
|
Regularization constants for square gradient and parameter scale respectively |
|
clip_threshold (`float`, *optional*, defaults to 1.0): |
|
Threshold of root mean square of final gradient update |
|
decay_rate (`float`, *optional*, defaults to -0.8): |
|
Coefficient used to compute running averages of square |
|
beta1 (`float`, *optional*): |
|
Coefficient used for computing running averages of gradient |
|
weight_decay (`float`, *optional*, defaults to 0.0): |
|
Weight decay (L2 penalty) |
|
scale_parameter (`bool`, *optional*, defaults to `True`): |
|
If True, learning rate is scaled by root mean square |
|
relative_step (`bool`, *optional*, defaults to `True`): |
|
If True, time-dependent learning rate is computed instead of external learning rate |
|
warmup_init (`bool`, *optional*, defaults to `False`): |
|
Time-dependent learning rate computation depends on whether warm-up initialization is being used |
|
|
|
This implementation handles low-precision (FP16, bfloat) values, but we have not thoroughly tested. |
|
|
|
Recommended T5 finetuning settings (https://discuss.huggingface.co/t/t5-finetuning-tips/684/3): |
|
|
|
- Training without LR warmup or clip_threshold is not recommended. |
|
|
|
- use scheduled LR warm-up to fixed LR |
|
- use clip_threshold=1.0 (https://arxiv.org/abs/1804.04235) |
|
- Disable relative updates |
|
- Use scale_parameter=False |
|
- Additional optimizer operations like gradient clipping should not be used alongside Adafactor |
|
|
|
Example: |
|
|
|
```python |
|
Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=1e-3) |
|
``` |
|
|
|
Others reported the following combination to work well: |
|
|
|
```python |
|
Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None) |
|
``` |
|
|
|
When using `lr=None` with [`Trainer`] you will most likely need to use [`~optimization.AdafactorSchedule`] |
|
scheduler as following: |
|
|
|
```python |
|
from transformers.optimization import Adafactor, AdafactorSchedule |
|
|
|
optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None) |
|
lr_scheduler = AdafactorSchedule(optimizer) |
|
trainer = Trainer(..., optimizers=(optimizer, lr_scheduler)) |
|
``` |
|
|
|
Usage: |
|
|
|
```python |
|
# replace AdamW with Adafactor |
|
optimizer = Adafactor( |
|
model.parameters(), |
|
lr=1e-3, |
|
eps=(1e-30, 1e-3), |
|
clip_threshold=1.0, |
|
decay_rate=-0.8, |
|
beta1=None, |
|
weight_decay=0.0, |
|
relative_step=False, |
|
scale_parameter=False, |
|
warmup_init=False, |
|
) |
|
```""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=None, |
|
eps=(1e-30, 1e-3), |
|
clip_threshold=1.0, |
|
decay_rate=-0.8, |
|
beta1=None, |
|
weight_decay=0.0, |
|
scale_parameter=True, |
|
relative_step=True, |
|
warmup_init=False, |
|
do_paramiter_swapping=False, |
|
paramiter_swapping_factor=0.1, |
|
stochastic_accumulation=True, |
|
): |
|
if lr is not None and relative_step: |
|
raise ValueError( |
|
"Cannot combine manual `lr` and `relative_step=True` options") |
|
if warmup_init and not relative_step: |
|
raise ValueError( |
|
"`warmup_init=True` requires `relative_step=True`") |
|
|
|
defaults = { |
|
"lr": lr, |
|
"eps": eps, |
|
"clip_threshold": clip_threshold, |
|
"decay_rate": decay_rate, |
|
"beta1": beta1, |
|
"weight_decay": weight_decay, |
|
"scale_parameter": scale_parameter, |
|
"relative_step": relative_step, |
|
"warmup_init": warmup_init, |
|
} |
|
super().__init__(params, defaults) |
|
|
|
self.base_lrs: List[float] = [ |
|
lr for group in self.param_groups |
|
] |
|
|
|
self.is_stochastic_rounding_accumulation = False |
|
|
|
|
|
if stochastic_accumulation: |
|
for group in self.param_groups: |
|
for param in group['params']: |
|
if param.requires_grad and param.dtype != torch.float32: |
|
self.is_stochastic_rounding_accumulation = True |
|
param.register_post_accumulate_grad_hook( |
|
stochastic_grad_accummulation |
|
) |
|
|
|
self.do_paramiter_swapping = do_paramiter_swapping |
|
self.paramiter_swapping_factor = paramiter_swapping_factor |
|
self._total_paramiter_size = 0 |
|
|
|
for group in self.param_groups: |
|
for param in group['params']: |
|
self._total_paramiter_size += torch.numel(param) |
|
|
|
print(f"Total training paramiters: {self._total_paramiter_size:,}") |
|
|
|
|
|
if self.do_paramiter_swapping: |
|
self.enable_paramiter_swapping(self.paramiter_swapping_factor) |
|
|
|
|
|
def enable_paramiter_swapping(self, paramiter_swapping_factor=0.1): |
|
self.do_paramiter_swapping = True |
|
self.paramiter_swapping_factor = paramiter_swapping_factor |
|
|
|
self.swap_paramiters() |
|
|
|
def swap_paramiters(self): |
|
all_params = [] |
|
|
|
for group in self.param_groups: |
|
for param in group['params']: |
|
param.requires_grad_(False) |
|
|
|
param.grad = None |
|
all_params.append(param) |
|
|
|
random.shuffle(all_params) |
|
|
|
|
|
target_paramiters = int(self._total_paramiter_size * self.paramiter_swapping_factor) |
|
total_paramiters = 0 |
|
for param in all_params: |
|
total_paramiters += torch.numel(param) |
|
if total_paramiters >= target_paramiters: |
|
break |
|
else: |
|
param.requires_grad_(True) |
|
|
|
@staticmethod |
|
def _get_lr(param_group, param_state): |
|
rel_step_sz = param_group["lr"] |
|
if param_group["relative_step"]: |
|
min_step = 1e-6 * \ |
|
param_state["step"] if param_group["warmup_init"] else 1e-2 |
|
rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"])) |
|
param_scale = 1.0 |
|
if param_group["scale_parameter"]: |
|
param_scale = max(param_group["eps"][1], param_state["RMS"]) |
|
return param_scale * rel_step_sz |
|
|
|
@staticmethod |
|
def _get_options(param_group, param_shape): |
|
factored = len(param_shape) >= 2 |
|
use_first_moment = param_group["beta1"] is not None |
|
return factored, use_first_moment |
|
|
|
@staticmethod |
|
def _rms(tensor): |
|
return tensor.norm(2) / (tensor.numel() ** 0.5) |
|
|
|
@staticmethod |
|
def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col): |
|
|
|
|
|
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=- |
|
1, keepdim=True)).rsqrt_().unsqueeze(-1) |
|
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() |
|
return torch.mul(r_factor, c_factor) |
|
|
|
def step_hook(self): |
|
if not self.is_stochastic_rounding_accumulation: |
|
return |
|
|
|
for group in self.param_groups: |
|
for param in group['params']: |
|
if param.requires_grad and hasattr(param, "_accum_grad"): |
|
param.grad = param._accum_grad |
|
del param._accum_grad |
|
|
|
|
|
def get_learning_rates(self): |
|
lrs = [ |
|
self._get_lr(group, self.state[group["params"][0]]) |
|
for group in self.param_groups |
|
if group["params"][0].grad is not None |
|
] |
|
if len(lrs) == 0: |
|
lrs = self.base_lrs |
|
return lrs |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
""" |
|
Performs a single optimization step |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
self.step_hook() |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
if p.grad is None or not p.requires_grad: |
|
continue |
|
|
|
grad = p.grad |
|
if grad.dtype != torch.float32: |
|
grad = grad.to(torch.float32) |
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
"Adafactor does not support sparse gradients.") |
|
|
|
|
|
|
|
|
|
|
|
state = self.state[p] |
|
grad_shape = grad.shape |
|
|
|
factored, use_first_moment = self._get_options( |
|
group, grad_shape) |
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
|
|
if use_first_moment: |
|
|
|
state["exp_avg"] = torch.zeros_like(grad) |
|
if factored: |
|
state["exp_avg_sq_row"] = torch.zeros( |
|
grad_shape[:-1]).to(grad) |
|
state["exp_avg_sq_col"] = torch.zeros( |
|
grad_shape[:-2] + grad_shape[-1:]).to(grad) |
|
else: |
|
state["exp_avg_sq"] = torch.zeros_like(grad) |
|
|
|
state["RMS"] = 0 |
|
else: |
|
if use_first_moment: |
|
state["exp_avg"] = state["exp_avg"].to(grad) |
|
if factored: |
|
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to( |
|
grad) |
|
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to( |
|
grad) |
|
else: |
|
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) |
|
|
|
p_data_fp32 = p |
|
|
|
if isinstance(p_data_fp32, QBytesTensor): |
|
p_data_fp32 = p_data_fp32.dequantize() |
|
if p.dtype != torch.float32: |
|
p_data_fp32 = p_data_fp32.clone().float() |
|
|
|
state["step"] += 1 |
|
state["RMS"] = self._rms(p_data_fp32) |
|
lr = self._get_lr(group, state) |
|
|
|
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"]) |
|
eps = group["eps"] |
|
if isinstance(eps, tuple) or isinstance(eps, list): |
|
eps = eps[0] |
|
update = (grad**2) + eps |
|
if factored: |
|
exp_avg_sq_row = state["exp_avg_sq_row"] |
|
exp_avg_sq_col = state["exp_avg_sq_col"] |
|
|
|
exp_avg_sq_row.mul_(beta2t).add_( |
|
update.mean(dim=-1), alpha=(1.0 - beta2t)) |
|
exp_avg_sq_col.mul_(beta2t).add_( |
|
update.mean(dim=-2), alpha=(1.0 - beta2t)) |
|
|
|
|
|
update = self._approx_sq_grad( |
|
exp_avg_sq_row, exp_avg_sq_col) |
|
update.mul_(grad) |
|
else: |
|
exp_avg_sq = state["exp_avg_sq"] |
|
|
|
exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t)) |
|
update = exp_avg_sq.rsqrt().mul_(grad) |
|
|
|
update.div_( |
|
(self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)) |
|
update.mul_(lr) |
|
|
|
if use_first_moment: |
|
exp_avg = state["exp_avg"] |
|
exp_avg.mul_(group["beta1"]).add_( |
|
update, alpha=(1 - group["beta1"])) |
|
update = exp_avg |
|
|
|
if group["weight_decay"] != 0: |
|
p_data_fp32.add_( |
|
p_data_fp32, alpha=(-group["weight_decay"] * lr)) |
|
|
|
p_data_fp32.add_(-update) |
|
|
|
if p.dtype != torch.float32: |
|
|
|
copy_stochastic(p, p_data_fp32) |
|
|
|
return loss |
|
|