Update app_lora.py
Browse files- app_lora.py +22 -17
app_lora.py
CHANGED
|
@@ -36,17 +36,8 @@ DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, wor
|
|
| 36 |
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
| 37 |
SUB_MODEL_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
|
| 38 |
SUB_MODEL_FILENAME = "Wan14BT2VFusioniX_fp16_.safetensors"
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
#LORA_REPO_ID = "Kijai/WanVideo_comfy"
|
| 43 |
-
#LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
# new experiment for future work
|
| 47 |
-
|
| 48 |
-
LORA_REPO_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
|
| 49 |
-
LORA_FILENAME = "FusionX_LoRa/Wan2.1_T2V_14B_FusionX_LoRA.safetensors"
|
| 50 |
|
| 51 |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
|
| 52 |
wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME)
|
|
@@ -57,9 +48,15 @@ pipe = NAGWanPipeline.from_pretrained(
|
|
| 57 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
|
| 58 |
pipe.to("cuda")
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
|
| 65 |
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
|
|
@@ -134,6 +131,10 @@ def generate_video(
|
|
| 134 |
else:
|
| 135 |
baseline_video_path = None
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
return nag_video_path, baseline_video_path, current_seed
|
| 138 |
|
| 139 |
|
|
@@ -150,15 +151,19 @@ def generate_video_with_example(
|
|
| 150 |
seed=DEFAULT_SEED, randomize_seed=False,
|
| 151 |
compare=True,
|
| 152 |
)
|
|
|
|
|
|
|
|
|
|
| 153 |
return nag_video_path, baseline_video_path, \
|
| 154 |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, \
|
| 155 |
DEFAULT_DURATION_SECONDS, DEFAULT_STEPS, seed, True
|
| 156 |
|
| 157 |
|
| 158 |
with gr.Blocks() as demo:
|
| 159 |
-
gr.Markdown('''# Normalized Attention Guidance (NAG) for fast 4 steps Wan2.1-T2V-14B with
|
| 160 |
Implementation of [Normalized Attention Guidance](https://chendaryen.github.io/NAG.github.io/).
|
| 161 |
-
|
|
|
|
| 162 |
''')
|
| 163 |
|
| 164 |
with gr.Row():
|
|
@@ -229,4 +234,4 @@ with gr.Blocks() as demo:
|
|
| 229 |
)
|
| 230 |
|
| 231 |
if __name__ == "__main__":
|
| 232 |
-
demo.queue().launch()
|
|
|
|
| 36 |
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
| 37 |
SUB_MODEL_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
|
| 38 |
SUB_MODEL_FILENAME = "Wan14BT2VFusioniX_fp16_.safetensors"
|
| 39 |
+
LORA_REPO_ID = "Kijai/WanVideo_comfy"
|
| 40 |
+
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
|
| 43 |
wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME)
|
|
|
|
| 48 |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
|
| 49 |
pipe.to("cuda")
|
| 50 |
|
| 51 |
+
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
|
| 52 |
+
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
|
| 53 |
+
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
|
| 54 |
+
for name, param in pipe.transformer.named_parameters():
|
| 55 |
+
if "lora_B" in name:
|
| 56 |
+
if "blocks.0" in name:
|
| 57 |
+
param.data = param.data * 0.25
|
| 58 |
+
pipe.fuse_lora()
|
| 59 |
+
pipe.unload_lora_weights()
|
| 60 |
|
| 61 |
pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
|
| 62 |
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
|
|
|
|
| 131 |
else:
|
| 132 |
baseline_video_path = None
|
| 133 |
|
| 134 |
+
if torch.cuda.is_available():
|
| 135 |
+
print("Allocated:", torch.cuda.memory_allocated() / 1024**2, "MB")
|
| 136 |
+
print("Cached: ", torch.cuda.memory_reserved() / 1024**2, "MB")
|
| 137 |
+
|
| 138 |
return nag_video_path, baseline_video_path, current_seed
|
| 139 |
|
| 140 |
|
|
|
|
| 151 |
seed=DEFAULT_SEED, randomize_seed=False,
|
| 152 |
compare=True,
|
| 153 |
)
|
| 154 |
+
if torch.cuda.is_available():
|
| 155 |
+
print("Allocated:", torch.cuda.memory_allocated() / 1024**2, "MB")
|
| 156 |
+
print("Cached: ", torch.cuda.memory_reserved() / 1024**2, "MB")
|
| 157 |
return nag_video_path, baseline_video_path, \
|
| 158 |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, \
|
| 159 |
DEFAULT_DURATION_SECONDS, DEFAULT_STEPS, seed, True
|
| 160 |
|
| 161 |
|
| 162 |
with gr.Blocks() as demo:
|
| 163 |
+
gr.Markdown('''# Normalized Attention Guidance (NAG) for fast 4 steps Wan2.1-T2V-14B with CausVid LoRA
|
| 164 |
Implementation of [Normalized Attention Guidance](https://chendaryen.github.io/NAG.github.io/).
|
| 165 |
+
|
| 166 |
+
[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors).
|
| 167 |
''')
|
| 168 |
|
| 169 |
with gr.Row():
|
|
|
|
| 234 |
)
|
| 235 |
|
| 236 |
if __name__ == "__main__":
|
| 237 |
+
demo.queue().launch()
|