Spaces:
Runtime error
Runtime error
744/C/B0228844//Rohit_Jain
commited on
Commit
·
5b47935
1
Parent(s):
222f6f5
app
Browse files- birb-style +1 -0
- herge-style +1 -0
- indian-watercolor-portraits +1 -0
- midjourney-style +1 -0
- qr_code1.png +0 -0
- sd_utils.py +224 -0
- style-of-marc-allante +1 -0
birb-style
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 421b470c1c55d204152be94d590aa4e5a2dcd715
|
herge-style
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 6ddab2d3191715a679b9e6bbc38aa05baff1ffa0
|
indian-watercolor-portraits
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 89ff0bc8ae9b4cb0731796be374c3f9efe2b54dc
|
midjourney-style
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 4a3668469aedc8f883a88d11192156d0374bcce2
|
qr_code1.png
ADDED
|
sd_utils.py
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy
|
| 3 |
+
import torch
|
| 4 |
+
from torch import autocast
|
| 5 |
+
from torchvision import transforms as tfms
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
import PIL
|
| 9 |
+
from PIL import Image
|
| 10 |
+
|
| 11 |
+
from diffusers import StableDiffusionPipeline
|
| 12 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, logging
|
| 13 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, KDPM2DiscreteScheduler
|
| 14 |
+
|
| 15 |
+
# For video display:
|
| 16 |
+
from IPython.display import HTML
|
| 17 |
+
from matplotlib import pyplot as plt
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
from tqdm.auto import tqdm
|
| 20 |
+
import cv2
|
| 21 |
+
|
| 22 |
+
bb = cv2.imread("./qr_code1.png")
|
| 23 |
+
bb = cv2.cvtColor(bb, cv2.COLOR_BGR2RGB)
|
| 24 |
+
tfm2 = tfms.Compose([
|
| 25 |
+
tfms.ToTensor(),
|
| 26 |
+
tfms.Resize([512, 512]),
|
| 27 |
+
tfms.CenterCrop(512),
|
| 28 |
+
#tfms.Normalize((0.6813,0.6813, 0.6813), (0.4549, 0.4549, 0.4549))
|
| 29 |
+
])
|
| 30 |
+
img2 = tfm2(bb)
|
| 31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
+
pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4"
|
| 33 |
+
# Load the autoencoder model which will be used to decode the latents into image space.
|
| 34 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
|
| 35 |
+
|
| 36 |
+
# Load the tokenizer and text encoder to tokenize and encode the text.
|
| 37 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
| 38 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
| 39 |
+
|
| 40 |
+
# The UNet model for generating the latents.
|
| 41 |
+
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet")
|
| 42 |
+
|
| 43 |
+
# The noise scheduler
|
| 44 |
+
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
| 45 |
+
#scheduler = KDPM2DiscreteScheduler(num_train_timesteps=1000, beta_start=)
|
| 46 |
+
|
| 47 |
+
# To the GPU we go!
|
| 48 |
+
vae = vae.to(device)
|
| 49 |
+
text_encoder = text_encoder.to(device)
|
| 50 |
+
unet = unet.to(device)
|
| 51 |
+
|
| 52 |
+
pipe = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path,torch_dtype=torch.float16).to(device)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# birb_embed = pipe.load_textual_inversion("sd-concepts-library/birb-style")
|
| 57 |
+
# herge_embed = pipe.load_textual_inversion("sd-concepts-library/herge-style")
|
| 58 |
+
# indian_water_color_embed = pipe.load_textual_inversion("sd-concepts-library/indian-watercolor-portraits")
|
| 59 |
+
# midjourney_embed = pipe.load_textual_inversion("sd-concepts-library/midjourney-style")
|
| 60 |
+
# marc_allante_embed = pipe.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
|
| 61 |
+
|
| 62 |
+
birb_embed = torch.load('./birb-style/learned_embeds.bin')
|
| 63 |
+
herge_embed = torch.load('./herge-style/learned_embeds.bin')
|
| 64 |
+
indian_water_color_embed = torch.load('./indian-watercolor-portraits/learned_embeds.bin')
|
| 65 |
+
midjourney_embed = torch.load('./midjourney-style/learned_embeds.bin')
|
| 66 |
+
marc_allante_embed = torch.load('./style-of-marc-allante/learned_embeds.bin')
|
| 67 |
+
|
| 68 |
+
style_seeds = {
|
| 69 |
+
'birb': 321,
|
| 70 |
+
'herge': 1,
|
| 71 |
+
'indian_watercolor': 42,
|
| 72 |
+
'midjourney': 8081,
|
| 73 |
+
'marc_allante': 100
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def qr_loss(images, qr_img):
|
| 79 |
+
|
| 80 |
+
#qr_img = 0.5 * qr_img
|
| 81 |
+
qr_img = qr_img.unsqueeze(0).to(device)
|
| 82 |
+
#error = F.mse_loss(images, qr_img, reduction='mean')
|
| 83 |
+
error = F.l1_loss(images, qr_img, reduction='mean')
|
| 84 |
+
|
| 85 |
+
return error
|
| 86 |
+
|
| 87 |
+
def set_timesteps(scheduler, num_inference_steps):
|
| 88 |
+
scheduler.set_timesteps(num_inference_steps)
|
| 89 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
|
| 90 |
+
|
| 91 |
+
def pil_to_latent(input_im):
|
| 92 |
+
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
| 95 |
+
return 0.18215 * latent.latent_dist.sample()
|
| 96 |
+
|
| 97 |
+
def latents_to_pil(latents):
|
| 98 |
+
# bath of latents -> list of images
|
| 99 |
+
latents = (1 / 0.18215) * latents
|
| 100 |
+
with torch.no_grad():
|
| 101 |
+
image = vae.decode(latents).sample
|
| 102 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 103 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
| 104 |
+
images = (image * 255).round().astype("uint8")
|
| 105 |
+
pil_images = [Image.fromarray(image) for image in images]
|
| 106 |
+
return pil_images
|
| 107 |
+
|
| 108 |
+
def get_output_embeds(input_embeddings):
|
| 109 |
+
# CLIP's text model uses causal mask, so we prepare it here:
|
| 110 |
+
bsz, seq_len = input_embeddings.shape[:2]
|
| 111 |
+
#causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
|
| 112 |
+
causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
|
| 113 |
+
|
| 114 |
+
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
|
| 115 |
+
# so that it doesn't just return the pooled final predictions:
|
| 116 |
+
encoder_outputs = text_encoder.text_model.encoder(
|
| 117 |
+
inputs_embeds=input_embeddings,
|
| 118 |
+
attention_mask=None, # We aren't using an attention mask so that can be None
|
| 119 |
+
causal_attention_mask=causal_attention_mask.to(device),
|
| 120 |
+
output_attentions=None,
|
| 121 |
+
output_hidden_states=True, # We want the output embs not the final output
|
| 122 |
+
return_dict=None,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# We're interested in the output hidden state only
|
| 126 |
+
output = encoder_outputs[0]
|
| 127 |
+
|
| 128 |
+
# There is a final layer norm we need to pass these through
|
| 129 |
+
output = text_encoder.text_model.final_layer_norm(output)
|
| 130 |
+
|
| 131 |
+
# And now they're ready
|
| 132 |
+
return output
|
| 133 |
+
|
| 134 |
+
def build_causal_attention_mask(bsz, seq_len, dtype):
|
| 135 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
| 136 |
+
# pytorch uses additive attention mask; fill with -inf
|
| 137 |
+
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
|
| 138 |
+
mask.fill_(torch.tensor(torch.finfo(dtype).min))
|
| 139 |
+
mask.triu_(1) # zero out the lower diagonal
|
| 140 |
+
mask = mask.unsqueeze(1) # expand mask
|
| 141 |
+
return mask
|
| 142 |
+
|
| 143 |
+
def generate_with_embs_custom_loss(prompt, text_embeddings, seed):
|
| 144 |
+
#prompt = "A labrador dog in a car" #@param
|
| 145 |
+
height = 512 # default height of Stable Diffusion
|
| 146 |
+
width = 512 # default width of Stable Diffusion
|
| 147 |
+
num_inference_steps = 50 #@param # Number of denoising steps
|
| 148 |
+
guidance_scale = 11 #@param # Scale for classifier-free guidance
|
| 149 |
+
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
|
| 150 |
+
batch_size = 1
|
| 151 |
+
blue_loss_scale = 100 #@param
|
| 152 |
+
|
| 153 |
+
# Prep text
|
| 154 |
+
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 155 |
+
with torch.no_grad():
|
| 156 |
+
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
|
| 157 |
+
|
| 158 |
+
# And the uncond. input as before:
|
| 159 |
+
max_length = text_input.input_ids.shape[-1]
|
| 160 |
+
uncond_input = tokenizer(
|
| 161 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
| 162 |
+
)
|
| 163 |
+
with torch.no_grad():
|
| 164 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
|
| 165 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 166 |
+
|
| 167 |
+
# Prep Scheduler
|
| 168 |
+
set_timesteps(scheduler, num_inference_steps)
|
| 169 |
+
|
| 170 |
+
# Prep latents
|
| 171 |
+
latents = torch.randn(
|
| 172 |
+
(batch_size, unet.in_channels, height // 8, width // 8),
|
| 173 |
+
generator=generator,
|
| 174 |
+
)
|
| 175 |
+
latents = latents.to(device)
|
| 176 |
+
latents = latents * scheduler.init_noise_sigma
|
| 177 |
+
|
| 178 |
+
# Loop
|
| 179 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
| 180 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
| 181 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 182 |
+
sigma = scheduler.sigmas[i]
|
| 183 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
| 184 |
+
|
| 185 |
+
# predict the noise residual
|
| 186 |
+
with torch.no_grad():
|
| 187 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
| 188 |
+
|
| 189 |
+
# perform CFG guidance
|
| 190 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 191 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 192 |
+
|
| 193 |
+
#### ADDITIONAL GUIDANCE ###
|
| 194 |
+
if i%2 == 0:
|
| 195 |
+
# Requires grad on the latents
|
| 196 |
+
latents = latents.detach().requires_grad_()
|
| 197 |
+
|
| 198 |
+
# Get the predicted x0:
|
| 199 |
+
latents_x0 = latents - sigma * noise_pred
|
| 200 |
+
#latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
|
| 201 |
+
|
| 202 |
+
# Decode to image space
|
| 203 |
+
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
| 204 |
+
|
| 205 |
+
# Calculate loss
|
| 206 |
+
#loss = blue_loss(denoised_images) * blue_loss_scale
|
| 207 |
+
#loss = purple_loss(denoised_images) * blue_loss_scale
|
| 208 |
+
loss = qr_loss(denoised_images, img2) * blue_loss_scale
|
| 209 |
+
|
| 210 |
+
# Occasionally print it out
|
| 211 |
+
if i%10==0:
|
| 212 |
+
print(i, 'loss:', loss.item())
|
| 213 |
+
|
| 214 |
+
# Get gradient
|
| 215 |
+
cond_grad = torch.autograd.grad(loss, latents)[0]
|
| 216 |
+
|
| 217 |
+
# Modify the latents based on this gradient
|
| 218 |
+
latents = latents.detach() - cond_grad * sigma**2
|
| 219 |
+
|
| 220 |
+
# Now step with scheduler
|
| 221 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
| 222 |
+
|
| 223 |
+
return latents_to_pil(latents)[0]
|
| 224 |
+
|
style-of-marc-allante
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 6de4ce4972ae09f61d6e4caf377b9ca00898b8b4
|