raffaeleterribile's picture
Modifica agente
94503b7 verified
raw
history blame
14.1 kB
import os
import json
import gradio as gr
import requests
import inspect
import torch
import pandas as pd
import yaml
# Tool disponibili di default:
# ApiWebSearchTool
# PythonInterpreterTool
# FinalAnswerTool
# UserInputTool
# WebSearchTool
# DuckDuckGoSearchTool
# GoogleSearchTool
# VisitWebpageTool
# WikipediaSearchTool
# SpeechToTextTool
from smolagents import CodeAgent, ToolCallingAgent, TransformersModel, VisitWebpageTool, PythonInterpreterTool, WebSearchTool, WikipediaSearchTool, FinalAnswerTool, Tool, tool # InferenceClientModel, GoogleSearchTool (usa SERPAPI_API_KEY), DuckDuckGoSearchTool
from smolagents.agents import PromptTemplates, EMPTY_PROMPT_TEMPLATES
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
@tool
def invert_sentence_tool(sentence: str) -> str:
"""
Inverts the order of all characters in a sentence.
Args:
sentence (str): The sentence to invert.
Returns:
str: The sentence with characters in reverse order.
"""
return sentence[::-1]
# --- First Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class FirstAgent:
### First Agent is the first attempt to develop an agent for the course. ###
def __init__(self):
""" Initializes the FirstAgent with a TransformersModel and a CodeAgent. """
# microsoft/Phi-4-reasoning-plus, microsoft/Phi-4-reasoning, microsoft/Phi-4-mini-reasoning, microsoft/Phi-4-mini-instruct, microsoft/Phi-4-multimodal-instruct, "Qwen/Qwen2.5-Coder-32B-Instruct", "HuggingFaceTB/SmolLM2-1.7B-Instruct"
model_id = "Qwen/Qwen2.5-Coder-32B-Instruct"
model = TransformersModel(model_id=model_id, trust_remote_code=True, max_new_tokens=4096)
# Inizializza l'agente
with open("prompts.yaml", "r", encoding="utf-8") as file:
prompts = yaml.safe_load(file)
prompt_templates = PromptTemplates(**prompts)
# prompt_templates = EMPTY_PROMPT_TEMPLATES
# prompt_templates["system_prompt"] = """You are an intelligent agent that answers questions and uses tools to help users.
# Think step by step and use tools when needed.
# If you need to search the web, use the WebSearchTool.
# If you need to visit a webpage, use the VisitWebpageTool.
# If you need to run Python code, use the PythonInterpreterTool.
# If you need to generate code to extract information, generate the code and use the PythonInterpreterTool to execute the code and extract the informations.
# If you find information in Wikipedia, use the WikipediaSearchTool.
# Verify your final answer and the format of the final answer before returning it.
# When you have found the definitive answer, return it by calling final_answer(answer) within a Python code block.
# If you don't know the answer, say 'I don't know'."""
# prompt_templates = PromptTemplates(
# system_prompt="You are an intelligent agent that helps users solve complex tasks using tools.",
# planning="Determine the logical steps to solve the user's problem.",
# managed_agent="Execute each planned step using the available tools.",
# final_answer="When you have completed all steps, return the final answer using final_answer()."
# )
self.agent = CodeAgent(
model=model,
prompt_templates=prompt_templates,
stream_outputs=True, # Enable streaming outputs
additional_authorized_imports=['requests', 'bs4'],
# add_base_tools=True, # Add base tools like UserInputTool
# use_structured_outputs_internally=True, # Use structured outputs internally
tools=[
WebSearchTool(),
PythonInterpreterTool(),
WikipediaSearchTool(),
VisitWebpageTool(),
invert_sentence_tool, # Custom tool to invert sentences
FinalAnswerTool() # Final answer tool to extract the final answer
]
)
print("FirstAgent inizializzato.")
def __call__(self, question: str) -> str:
""" Runs the agent with the provided question and returns the answer. """
print(f"Agent ricevuto domanda (primi 50 char): {question[:50]}...")
try:
answer = self.agent.run(question)
print(f"Agent restituisce risposta: {str(answer)[:100]}...")
return answer
except Exception as e:
print(f"Errore nell'agente: {e}")
return f"Errore nell'agente: {str(e)}"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
### Basic Agent is a placeholder for a simple agent that always returns a fixed answer. ###
### It is used to demonstrate the structure of an agent. ###
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = FirstAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions from API: {e}")
print("Attempting to load questions from local file 'questions.json'...")
try:
with open("questions.json", "r", encoding="utf-8") as f:
questions_data = json.load(f)
if not questions_data:
return "Both API and local questions file are empty.", None
print(f"Successfully loaded {len(questions_data)} questions from local file.")
except FileNotFoundError:
return "Error: Could not fetch questions from API and 'questions.json' file not found.", None
except json.JSONDecodeError as json_e:
return f"Error: Could not fetch questions from API and local file has invalid JSON: {json_e}", None
except Exception as file_e:
return f"Error: Could not fetch questions from API and failed to read local file: {file_e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
print("Attempting to load questions from local file 'questions.json'...")
try:
with open("questions.json", "r", encoding="utf-8") as f:
questions_data = json.load(f)
if not questions_data:
return "Both API response is invalid and local questions file is empty.", None
print(f"Successfully loaded {len(questions_data)} questions from local file.")
except FileNotFoundError:
return "Error: Could not decode API response and 'questions.json' file not found.", None
except json.JSONDecodeError as json_e:
return f"Error: Could not decode API response and local file has invalid JSON: {json_e}", None
except Exception as file_e:
return f"Error: Could not decode API response and failed to read local file: {file_e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
print("Attempting to load questions from local file 'questions.json'...")
try:
with open("questions.json", "r", encoding="utf-8") as f:
questions_data = json.load(f)
if not questions_data:
return "Unexpected API error occurred and local questions file is empty.", None
print(f"Successfully loaded {len(questions_data)} questions from local file.")
except FileNotFoundError:
return "Error: Unexpected API error occurred and 'questions.json' file not found.", None
except json.JSONDecodeError as json_e:
return f"Error: Unexpected API error occurred and local file has invalid JSON: {json_e}", None
except Exception as file_e:
return f"Error: Unexpected API error occurred and failed to read local file: {file_e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Raffaele Agent Evaluation Runner")
gr.Markdown(
"""
1. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)