Spaces:
Runtime error
Runtime error
import spaces | |
from torch import nn | |
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM | |
from pathlib import Path | |
import torch | |
import torch.amp.autocast_mode | |
from PIL import Image | |
import os | |
import torchvision.transforms.functional as TVF | |
import io | |
import base64 | |
import logging | |
import runpod | |
import requests | |
# Add logging configuration right after | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
CLIP_PATH = "google/siglip-so400m-patch14-384" | |
CHECKPOINT_PATH = Path("cgrkzexw-599808") | |
TITLE = "<h1><center>JoyCaption Alpha Two (2024-09-26a)</center></h1>" | |
CAPTION_TYPE_MAP = { | |
"Descriptive": [ | |
"Write a descriptive caption for this image in a formal tone.", | |
"Write a descriptive caption for this image in a formal tone within {word_count} words.", | |
"Write a {length} descriptive caption for this image in a formal tone.", | |
], | |
"Descriptive (Informal)": [ | |
"Write a descriptive caption for this image in a casual tone.", | |
"Write a descriptive caption for this image in a casual tone within {word_count} words.", | |
"Write a {length} descriptive caption for this image in a casual tone.", | |
], | |
"Training Prompt": [ | |
"Write a stable diffusion prompt for this image.", | |
"Write a stable diffusion prompt for this image within {word_count} words.", | |
"Write a {length} stable diffusion prompt for this image.", | |
], | |
"MidJourney": [ | |
"Write a MidJourney prompt for this image.", | |
"Write a MidJourney prompt for this image within {word_count} words.", | |
"Write a {length} MidJourney prompt for this image.", | |
], | |
"Booru tag list": [ | |
"Write a list of Booru tags for this image.", | |
"Write a list of Booru tags for this image within {word_count} words.", | |
"Write a {length} list of Booru tags for this image.", | |
], | |
"Booru-like tag list": [ | |
"Write a list of Booru-like tags for this image.", | |
"Write a list of Booru-like tags for this image within {word_count} words.", | |
"Write a {length} list of Booru-like tags for this image.", | |
], | |
"Art Critic": [ | |
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.", | |
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.", | |
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}.", | |
], | |
"Product Listing": [ | |
"Write a caption for this image as though it were a product listing.", | |
"Write a caption for this image as though it were a product listing. Keep it under {word_count} words.", | |
"Write a {length} caption for this image as though it were a product listing.", | |
], | |
"Social Media Post": [ | |
"Write a caption for this image as if it were being used for a social media post.", | |
"Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.", | |
"Write a {length} caption for this image as if it were being used for a social media post.", | |
], | |
} | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
class ImageAdapter(nn.Module): | |
def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool): | |
super().__init__() | |
self.deep_extract = deep_extract | |
if self.deep_extract: | |
input_features = input_features * 5 | |
self.linear1 = nn.Linear(input_features, output_features) | |
self.activation = nn.GELU() | |
self.linear2 = nn.Linear(output_features, output_features) | |
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features) | |
self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features)) | |
# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>) | |
self.other_tokens = nn.Embedding(3, output_features) | |
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3 | |
def forward(self, vision_outputs: torch.Tensor): | |
if self.deep_extract: | |
x = torch.concat(( | |
vision_outputs[-2], | |
vision_outputs[3], | |
vision_outputs[7], | |
vision_outputs[13], | |
vision_outputs[20], | |
), dim=-1) | |
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features | |
assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}" | |
else: | |
x = vision_outputs[-2] | |
x = self.ln1(x) | |
if self.pos_emb is not None: | |
assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}" | |
x = x + self.pos_emb | |
x = self.linear1(x) | |
x = self.activation(x) | |
x = self.linear2(x) | |
# <|image_start|>, IMAGE, <|image_end|> | |
other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1)) | |
assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}" | |
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1) | |
return x | |
def get_eot_embedding(self): | |
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0) | |
# Load CLIP | |
logger.info("Loading CLIP model...") | |
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH) | |
clip_model = AutoModel.from_pretrained(CLIP_PATH) | |
clip_model = clip_model.vision_model | |
logger.info("CLIP model loaded successfully") | |
logger.info("Loading VLM's custom vision model...") | |
assert (CHECKPOINT_PATH / "clip_model.pt").exists() | |
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu') | |
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()} | |
clip_model.load_state_dict(checkpoint) | |
del checkpoint | |
logger.info("VLM's custom vision model loaded successfully") | |
clip_model.eval() | |
clip_model.requires_grad_(False) | |
clip_model.to("cuda") | |
logger.info("CLIP model moved to GPU") | |
# Tokenizer | |
logger.info("Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT_PATH / "text_model", use_fast=True) | |
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast) | |
logger.info("Tokenizer loaded successfully") | |
# LLM | |
logger.info("Loading LLM...") | |
text_model = AutoModelForCausalLM.from_pretrained( | |
CHECKPOINT_PATH / "text_model", | |
device_map=0, | |
torch_dtype=torch.bfloat16 | |
) | |
logger.info("LLM loaded successfully") | |
text_model.eval() | |
# Image Adapter | |
print("Loading image adapter") | |
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False) | |
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")) | |
image_adapter.eval() | |
image_adapter.to("cuda") | |
def stream_chat(input_image: Image.Image, caption_type: str, caption_length: str | int, extra_options: list[str], name_input: str, custom_prompt: str) -> tuple[str, str]: | |
torch.cuda.empty_cache() | |
# 'any' means no length specified | |
length = None if caption_length == "any" else caption_length | |
if isinstance(length, str): | |
try: | |
length = int(length) | |
except ValueError: | |
pass | |
# Build prompt | |
if length is None: | |
map_idx = 0 | |
elif isinstance(length, int): | |
map_idx = 1 | |
elif isinstance(length, str): | |
map_idx = 2 | |
else: | |
raise ValueError(f"Invalid caption length: {length}") | |
prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx] | |
# Add extra options | |
if len(extra_options) > 0: | |
prompt_str += " " + " ".join(extra_options) | |
# Add name, length, word_count | |
prompt_str = prompt_str.format(name=name_input, length=caption_length, word_count=caption_length) | |
if custom_prompt.strip() != "": | |
prompt_str = custom_prompt.strip() | |
# For debugging | |
print(f"Prompt: {prompt_str}") | |
# Preprocess image | |
# NOTE: I found the default processor for so400M to have worse results than just using PIL directly | |
#image = clip_processor(images=input_image, return_tensors='pt').pixel_values | |
image = input_image.resize((384, 384), Image.LANCZOS) | |
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0 | |
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5]) | |
pixel_values = pixel_values.to('cuda') | |
# Embed image | |
# This results in Batch x Image Tokens x Features | |
with torch.amp.autocast_mode.autocast('cuda', enabled=True): | |
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True) | |
embedded_images = image_adapter(vision_outputs.hidden_states) | |
embedded_images = embedded_images.to('cuda') | |
# Build the conversation | |
convo = [ | |
{ | |
"role": "system", | |
"content": "You are a helpful image captioner.", | |
}, | |
{ | |
"role": "user", | |
"content": prompt_str, | |
}, | |
] | |
# Format the conversation | |
convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True) | |
assert isinstance(convo_string, str) | |
# Tokenize the conversation | |
# prompt_str is tokenized separately so we can do the calculations below | |
convo_tokens = tokenizer.encode(convo_string, return_tensors="pt", add_special_tokens=False, truncation=False) | |
prompt_tokens = tokenizer.encode(prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False) | |
assert isinstance(convo_tokens, torch.Tensor) and isinstance(prompt_tokens, torch.Tensor) | |
convo_tokens = convo_tokens.squeeze(0) # Squeeze just to make the following easier | |
prompt_tokens = prompt_tokens.squeeze(0) | |
# Calculate where to inject the image | |
eot_id_indices = (convo_tokens == tokenizer.convert_tokens_to_ids("<|eot_id|>")).nonzero(as_tuple=True)[0].tolist() | |
assert len(eot_id_indices) == 2, f"Expected 2 <|eot_id|> tokens, got {len(eot_id_indices)}" | |
preamble_len = eot_id_indices[1] - prompt_tokens.shape[0] # Number of tokens before the prompt | |
# Embed the tokens | |
convo_embeds = text_model.model.embed_tokens(convo_tokens.unsqueeze(0).to('cuda')) | |
# Construct the input | |
input_embeds = torch.cat([ | |
convo_embeds[:, :preamble_len], # Part before the prompt | |
embedded_images.to(dtype=convo_embeds.dtype), # Image | |
convo_embeds[:, preamble_len:], # The prompt and anything after it | |
], dim=1).to('cuda') | |
input_ids = torch.cat([ | |
convo_tokens[:preamble_len].unsqueeze(0), | |
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), # Dummy tokens for the image (TODO: Should probably use a special token here so as not to confuse any generation algorithms that might be inspecting the input) | |
convo_tokens[preamble_len:].unsqueeze(0), | |
], dim=1).to('cuda') | |
attention_mask = torch.ones_like(input_ids) | |
# Debugging | |
print(f"Input to model: {repr(tokenizer.decode(input_ids[0]))}") | |
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None) | |
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None) | |
generate_ids = text_model.generate(input_ids, inputs_embeds=input_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, suppress_tokens=None) # Uses the default which is temp=0.6, top_p=0.9 | |
# Trim off the prompt | |
generate_ids = generate_ids[:, input_ids.shape[1]:] | |
if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"): | |
generate_ids = generate_ids[:, :-1] | |
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] | |
return prompt_str, caption.strip() | |
# Add this function to handle base64 image conversion | |
def base64_to_pil(base64_str): | |
if isinstance(base64_str, str): | |
# Remove data URL prefix if present | |
if 'base64,' in base64_str: | |
base64_str = base64_str.split('base64,')[1] | |
image_bytes = base64.b64decode(base64_str) | |
image = Image.open(io.BytesIO(image_bytes)) | |
return image | |
return base64_str | |
# Simple RunPod handler that forwards to stream_chat | |
def handler(event): | |
try: | |
# Extract data from the Runpod event | |
data = event["input"] | |
# Check if input is a dictionary (which seems to be the case from the error) | |
if isinstance(data["input_image"], dict): | |
return { | |
"status": "error", | |
"message": "Invalid image format. Expected base64 string or file data." | |
} | |
# Convert base64 image to PIL Image | |
if isinstance(data["input_image"], str): | |
# Remove data URL prefix if present | |
if 'base64,' in data["input_image"]: | |
data["input_image"] = data["input_image"].split('base64,')[1] | |
image_data = base64.b64decode(data["input_image"]) | |
image = Image.open(io.BytesIO(image_data)) | |
else: | |
return { | |
"status": "error", | |
"message": "Invalid image format" | |
} | |
# Now we have a valid PIL Image, proceed with the stream_chat call | |
result = stream_chat( | |
input_image=image, | |
caption_type=data.get("caption_type", "Descriptive"), | |
caption_length=data.get("caption_length", "any"), | |
extra_options=data.get("extra_options", []), | |
name_input=data.get("name_input", ""), | |
custom_prompt=data.get("custom_prompt", "") | |
) | |
return { | |
"output": result | |
} | |
except Exception as e: | |
return { | |
"status": "error", | |
"message": str(e) | |
} | |
if __name__ == "__main__": | |
# Start RunPod serverless | |
runpod.serverless.start({"handler": handler}) |