Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Query
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
+
import torch
|
4 |
+
from retriever import retrieve_documents
|
5 |
+
|
6 |
+
# Load Mistral 7B model
|
7 |
+
MODEL_NAME = "mistralai/Mistral-7B-v0.1"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto", torch_dtype=torch.float16)
|
10 |
+
|
11 |
+
# Create inference pipeline
|
12 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
13 |
+
|
14 |
+
# FastAPI server
|
15 |
+
app = FastAPI()
|
16 |
+
|
17 |
+
@app.get("/")
|
18 |
+
def read_root():
|
19 |
+
return {"message": "Mistral 7B RAG API is running!"}
|
20 |
+
|
21 |
+
@app.get("/generate/")
|
22 |
+
def generate_response(query: str = Query(..., title="User Query")):
|
23 |
+
# Retrieve relevant documents
|
24 |
+
retrieved_docs = retrieve_documents(query)
|
25 |
+
|
26 |
+
# Format prompt for RAG
|
27 |
+
prompt = f"Use the following information to answer:\n{retrieved_docs}\n\nUser: {query}\nAI:"
|
28 |
+
|
29 |
+
# Generate response
|
30 |
+
output = generator(prompt, max_length=256, do_sample=True, temperature=0.7)[0]["generated_text"]
|
31 |
+
|
32 |
+
return {"query": query, "response": output}
|