import os
import gradio as gr
import numpy as np
import skimage
from skimage import io
import torch
import monai
from monai.transforms import Rotate
# Placeholder for the 3D reconstruction model
class Simple3DReconstructionModel:
def __init__(self):
# Load your pre-trained model here
self.model = None # replace with actual model loading
def reconstruct_3d(self, image):
# Implement the 3D reconstruction logic here
# This is a placeholder example
return np.zeros((128, 128, 128))
def rotate_3d(self, volume, angles):
# Rotate the 3D volume using MONAI
rotate = Rotate(angles, mode='bilinear')
rotated_volume = rotate(volume)
return rotated_volume
def project_2d(self, volume):
# Project the 3D volume back to 2D
# This is a placeholder example
projection = np.max(volume, axis=0)
return projection
# Initialize the model
model = Simple3DReconstructionModel()
# Gradio helper functions
def process_image(img, xt, yt, zt):
# Reconstruct the 3D volume
volume = model.reconstruct_3d(img)
# Rotate the 3D volume
rotated_volume = model.rotate_3d(volume, (xt, yt, zt))
# Project the rotated volume back to 2D
output_img = model.project_2d(rotated_volume)
return output_img
def rotate_btn_fn(img, xt, yt, zt, add_bone_cmap=False):
try:
angles = (xt, yt, zt)
print(f"Rotating with angles: {angles}")
if isinstance(img, np.ndarray):
input_img_path = "uploaded_image.png"
skimage.io.imsave(input_img_path, img)
elif isinstance(img, str) and os.path.exists(img):
input_img_path = img
img = skimage.io.imread(input_img_path)
else:
raise ValueError("Invalid input image")
# Process the image with the model
out_img = process_image(img, xt, yt, zt)
if not add_bone_cmap:
return out_img
cmap = plt.get_cmap('bone')
out_img = cmap(out_img)
out_img = (out_img[..., :3] * 255).astype(np.uint8)
return out_img
except Exception as e:
print(f"Error in rotate_btn_fn: {e}")
return None
css_style = "./style.css"
callback = gr.CSVLogger()
with gr.Blocks(css=css_style, title="RadRotator") as app:
gr.HTML("RadRotator: 3D Rotation of Radiographs with Diffusion Models", elem_classes="title")
gr.HTML("Developed by:
Pouria Rouzrokh, Bardia Khosravi, Shahriar Faghani, Kellen Mulford, Michael J. Taunton, Bradley J. Erickson, Cody C. Wyles
[Our website], [arXiv Paper]", elem_classes="note")
gr.HTML("Note: The demo operates on a CPU, and since diffusion models require more computational capacity to function, all predictions are precomputed.", elem_classes="note")
with gr.TabItem("Demo"):
with gr.Row():
input_img = gr.Image(type='numpy', label='Input image', interactive=True, elem_classes='imgs')
output_img = gr.Image(type='numpy', label='Output image', interactive=False, elem_classes='imgs')
with gr.Row():
with gr.Column(scale=0.25):
pass
with gr.Column(scale=1):
gr.Examples(
examples = [os.path.join("./data/examples", f) for f in os.listdir("./data/examples") if "xr" in f],
inputs = [input_img],
label = "Xray Examples",
elem_id='examples',
)
with gr.Column(scale=0.25):
pass
with gr.Row():
gr.Markdown('Please select an example image, choose your rotation angles, and press Rotate!', elem_classes='text')
with gr.Row():
with gr.Column(scale=1):
xt = gr.Slider(label='x axis (medial/lateral rotation):', elem_classes='angle', value=0, minimum=-15, maximum=15, step=5)
with gr.Column(scale=1):
yt = gr.Slider(label='y axis (inlet/outlet rotation):', elem_classes='angle', value=0, minimum=-15, maximum=15, step=5)
with gr.Column(scale=1):
zt = gr.Slider(label='z axis (plane rotation):', elem_classes='angle', value=0, minimum=-15, maximum=15, step=5)
with gr.Row():
rotate_btn = gr.Button("Rotate!", elem_classes='rotate_button')
rotate_btn.click(fn=rotate_btn_fn, inputs=[input_img, xt, yt, zt], outputs=output_img)
try:
app.close()
gr.close_all()
except Exception as e:
print(f"Error closing app: {e}")
demo = app.launch(
max_threads=4,
share=True,
inline=False,
show_api=False,
show_error=False,
)