diffusion: timesteps: 1000 schedule_name: cosine enforce_zero_terminal_snr: true schedule_params: beta_start: 0.0001 beta_end: 0.02 cosine_s: 0.008 timestep_respacing: null mean_type: VELOCITY var_type: LEARNED_RANGE loss_type: MSE optimizer: lr: 0.00001 type: bkh_pytorch_utils.Lion validation: classifier_cond_scale: 4 protocol: DDPM log_original: true log_concat: true cls_log_indices: [0, 1, 2, 3] model: input_size: 256 dims: 2 attention_resolutions: [8, 16, 32] channel_mult: [1, 1, 2, 2, 4, 4] dropout: 0.0 in_channels: 2 out_channels: 2 model_channels: 128 num_head_channels: -1 num_heads: 4 num_heads_upsample: -1 num_res_blocks: [2, 2, 2, 2, 2, 2] resblock_updown: false use_checkpoint: false use_new_attention_order: false use_scale_shift_norm: true scale_skip_connection: false # conditions num_classes: 772 # num_classes: 4 concat_channels: 1 guidance_drop_prob: 0.1 missing_class_value: null