RadRotator / diffusion_configs.yaml
Pouriarouzrokh's picture
Added the gradio demo files
2993f76
raw
history blame
999 Bytes
diffusion:
timesteps: 1000
schedule_name: cosine
enforce_zero_terminal_snr: true
schedule_params:
beta_start: 0.0001
beta_end: 0.02
cosine_s: 0.008
timestep_respacing: null
mean_type: VELOCITY
var_type: LEARNED_RANGE
loss_type: MSE
optimizer:
lr: 0.00001
type: bkh_pytorch_utils.Lion
validation:
classifier_cond_scale: 4
protocol: DDPM
log_original: true
log_concat: true
cls_log_indices: [0, 1, 2, 3]
model:
input_size: 256
dims: 2
attention_resolutions: [8, 16, 32]
channel_mult: [1, 1, 2, 2, 4, 4]
dropout: 0.0
in_channels: 2
out_channels: 2
model_channels: 128
num_head_channels: -1
num_heads: 4
num_heads_upsample: -1
num_res_blocks: [2, 2, 2, 2, 2, 2]
resblock_updown: false
use_checkpoint: false
use_new_attention_order: false
use_scale_shift_norm: true
scale_skip_connection: false
# conditions
num_classes: 772
# num_classes: 4
concat_channels: 1
guidance_drop_prob: 0.1
missing_class_value: null