import math import torch import torch.nn as nn from networks.drn import drn_c_26 def fill_up_weights(up): w = up.weight.data f = math.ceil(w.size(2) / 2) c = (2 * f - 1 - f % 2) / (2. * f) for i in range(w.size(2)): for j in range(w.size(3)): w[0, 0, i, j] = \ (1 - math.fabs(i / f - c)) * (1 - math.fabs(j / f - c)) for c in range(1, w.size(0)): w[c, 0, :, :] = w[0, 0, :, :] class DRNSeg(nn.Module): def __init__(self, classes, pretrained_drn=False, pretrained_model=None, use_torch_up=False): super(DRNSeg, self).__init__() model = drn_c_26(pretrained=pretrained_drn) self.base = nn.Sequential(*list(model.children())[:-2]) if pretrained_model: self.load_pretrained(pretrained_model) self.seg = nn.Conv2d(model.out_dim, classes, kernel_size=1, bias=True) m = self.seg n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() if use_torch_up: self.up = nn.UpsamplingBilinear2d(scale_factor=8) else: up = nn.ConvTranspose2d(classes, classes, 16, stride=8, padding=4, output_padding=0, groups=classes, bias=False) fill_up_weights(up) up.weight.requires_grad = False self.up = up def forward(self, x): x = self.base(x) x = self.seg(x) y = self.up(x) return y def optim_parameters(self, memo=None): for param in self.base.parameters(): yield param for param in self.seg.parameters(): yield param def load_pretrained(self, pretrained_model): print("loading the pretrained drn model from %s" % pretrained_model) state_dict = torch.load(pretrained_model, map_location='cpu') if hasattr(state_dict, '_metadata'): del state_dict._metadata # filter out unnecessary keys pretrained_dict = state_dict['model'] pretrained_dict = {k[5:]: v for k, v in pretrained_dict.items() if k.split('.')[0] == 'base'} # load the pretrained state dict self.base.load_state_dict(pretrained_dict) class DRNSub(nn.Module): def __init__(self, num_classes, pretrained_model=None, fix_base=False): super(DRNSub, self).__init__() drnseg = DRNSeg(2) if pretrained_model: print("loading the pretrained drn model from %s" % pretrained_model) state_dict = torch.load(pretrained_model, map_location='cpu') drnseg.load_state_dict(state_dict['model']) self.base = drnseg.base if fix_base: for param in self.base.parameters(): param.requires_grad = False self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, num_classes) def forward(self, x): x = self.base(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x