File size: 3,251 Bytes
2acb2ce
 
56699da
2acb2ce
 
 
 
 
60f6bf7
05e4845
60f6bf7
56699da
2acb2ce
56699da
2acb2ce
 
60f6bf7
2acb2ce
56699da
2acb2ce
60f6bf7
 
 
2acb2ce
 
 
 
56699da
 
2acb2ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56699da
 
 
 
2acb2ce
60f6bf7
56699da
 
2acb2ce
56699da
 
 
 
2acb2ce
56699da
05e4845
 
56699da
05e4845
 
56699da
 
 
05e4845
 
 
 
 
 
56699da
 
05e4845
 
56699da
05e4845
 
56699da
05e4845
56699da
05e4845
 
56699da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from doctest import Example
import gradio as gr
from transformers import DPTImageProcessor, DPTForDepthEstimation
import torch
import numpy as np
from PIL import Image, ImageOps
from pathlib import Path
import glob
from autostereogram.converter import StereogramConverter
from datetime import datetime
import time
import tempfile

feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")

stereo_converter = StereogramConverter()


def process_image(image_path):
    print("\n\n\n")
    print("Processing image:", image_path)
    last_time = time.time()
    image_raw = Image.open(Path(image_path))

    image = image_raw.resize(
        (1280, int(1280 * image_raw.size[1] / image_raw.size[0])),
        Image.Resampling.LANCZOS,
    )

    # prepare image for the model
    encoding = feature_extractor(image, return_tensors="pt")

    # forward pass
    with torch.no_grad():
        outputs = model(**encoding)
        predicted_depth = outputs.predicted_depth

    # interpolate to original size
    prediction = torch.nn.functional.interpolate(
        predicted_depth.unsqueeze(1),
        size=image.size[::-1],
        mode="bicubic",
        align_corners=False,
    ).squeeze()
    output = prediction.cpu().numpy()
    depth_image = (output * 255 / np.max(output)).astype("uint8")
    depth_image_padded = np.array(
        ImageOps.pad(Image.fromarray(depth_image), (1280, 720))
    )

    stereo_image = stereo_converter.convert_depth_to_stereogram_with_thread_pool(
        depth_image_padded, False
    ).astype(np.uint8)

    stereo_image_pil = Image.fromarray(stereo_image).convert("RGB")
    with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as f:
        image_name = f.name
        stereo_image_pil.save(image_name)

    return [depth_image_padded, stereo_image, image_name]


examples_images = [[f] for f in sorted(glob.glob("examples/*.jpg"))]


with gr.Blocks() as blocks:
    gr.Markdown(
        """
## Depth Image to Autostereogram (Magic Eye)
This demo is a variation from the original [DPT Demo](https://huggingface.co/spaces/nielsr/dpt-depth-estimation).
Zero-shot depth estimation from an image, then it uses [pystereogram](https://github.com/yxiao1996/pystereogram)
to generate the autostereogram (Magic Eye)
<base target="_blank">

"""
    )
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="filepath", label="Input Image")
            button = gr.Button("Predict")
        with gr.Column():
            predicted_depth = gr.Image(label="Predicted Depth", type="pil")
    with gr.Row():
        autostereogram = gr.Image(label="Autostereogram", type="pil")
    with gr.Row():
        with gr.Column():
            file_download = gr.File(label="Download Image")
    with gr.Row():
        gr.Examples(
            examples=examples_images,
            fn=process_image,
            inputs=[input_image],
            outputs=[predicted_depth, autostereogram, file_download],
            cache_examples=True,
        )
    button.click(
        fn=process_image,
        inputs=[input_image],
        outputs=[predicted_depth, autostereogram, file_download],
    )
blocks.launch(debug=True)